Title: Measuring the cosmic ecosystem with weak gravitational lensing

Speakers: Mike Hudson

Collection/Series: Cosmic Ecosystems

Subject: Cosmology

Date: July 31, 2025 - 3:30 PM

URL: https://pirsa.org/25070075

Abstract:

Weak gravitational lensing is the only way to probe the total matter distribution on the scales of galaxies and the surrounding cosmic web. Understanding the dark matter distribution and its link to galaxies is critical not only galaxy formation and evolution, but also to correctly extract the cosmological parameters from weak lensing surveys. I will highlight recent results from the Ultraviolet Near Infrared Optical Northern Survey (UNIONS), a major weak lensing survey of 6000 square degrees of the northern sky, that probe the dark matter distribution around luminous red galaxies, allowing us to see the feedback-affected matter profiles, around galaxy mergers and in filaments of the cosmic web. If time permits, I will discuss prospect for future weak lensing surveys such as Euclid.

Pirsa: 25070075 Page 1/14

MEASURING THE COSMIC ECOSYSTEM WITH WEAK LENSING

Mike Hudson

Pirsa: 25070075 Page 2/14

UNIONS Weak Lensing Team: L Baumont, P Burger, M. Campbell, I Cheng, A Corinaldi, C Dailey, J Elvin-Poole, S Fabbro, S Farrens, R Gavazzi, L Goh, S Gu, S Guerrini, A Guinot, H Hildebrandt, F Hervas-Peters, M Kilbinger, H Martin, C. Murray, D. Patel, B Robison, I Spitzer, L van Waerbeke, A Wittje, Z Yan, J Zhang

UNIONS Steering Group: A McConnachie, J-C Cuillandre, M Balogh, R Carlberg, K Chambers, T de Boer, H Furusawa, S Gwyn, G Magnier, M Oguri, K Osato

Pirsa: 25070075 Page 3/14

ULTRAVIOLET NEAR-INFRARED OPTICAL NORTHERN SURVEY

UNIONS survey details in Gwyn et al 25, arXiv:2503.13783

Pirsa: 25070075 Page 4/14

FILAMENTS IN THE COSMIC WEB

N-body Simulation (Diemer)

Physical LRG pairs

Projected LRG pairs

Epps & MH, 2017

Pirsa: 25070075 Page 5/14

FILAMENTS IN THE COSMIC WEB

J. Zhang, P. Burger, MH et al in prep

T.Yang, MH, N. Afshordi '22

Pirsa: 25070075 Page 6/14

HALOS OF GALAXY MERGERS

I Cheng, Elvin-Poole, MH et al 25 arXiv:2502.00584

Pirsa: 25070075

• No significant difference, but can rule out extreme (60%) starbursts during mergers.

I Cheng, Elvin-Poole, MH et al. 25 arXiv:2502.00584

Pirsa: 25070075 Page 8/14

- No significant difference, but can rule out extreme (60%) starbursts during mergers.
- But what about the low concentrations of the isolated controls?

I Cheng, Elvin-Poole, MH et al. 25 arXiv:2502.00584

Pirsa: 25070075

FEEDBACK AFFECTS DENSITY PROFILE

Renneby et al. 2020

Feedback alters the **total mass** distribution:

both the gas and the backreaction on the dark matter

Pirsa: 25070075 Page 10/14

MASS-CONCENTRATION

Pirsa: 25070075 Page 11/14

MASS-CONCENTRATION

- Mis-centring?
- Assembly bias?
 - P. Burger finds only ~5% level differences in c for isolated galaxies.
- Feedback?
 - ... really **strong** feedback?

Pirsa: 25070075 Page 12/14

TAKEAWAY POINTS

• UNIONS has large overlap with spectroscopy (SDSS/BOSS/DESI)

Weak Lensing lets us see DM structures directly:

Filaments of the cosmic web

Halo structure and its response to feedback

Pirsa: 25070075 Page 13/14

FILAMENTS IN THE COSMIC WEB

N-body Simulation (Diemer)

Physical LRG pairs

Projected LRG pairs

Epps & MH, 2017

Pirsa: 25070075 Page 14/14