Title: Lorentzian Quasicrystals and the Irrationality of Spacetime

Speakers: Sotirios Mygdalas

Collection/Series: Lee's Fest: Quantum Gravity and the Nature of Time

Date: June 06, 2025 - 11:50 AM

URL: https://pirsa.org/25060084

Abstract:

Ordered structures that tile the plane in an aperiodic fashion - thus lacking translational symmetry - have long been considered in the mathematical literature. A general method for the construction of quasicrystals is known as *cut-and-project* ($\mathsf{CNP}\$ for short), where an irrational slice "cuts" a higher-dimensional space endowed with a lattice and suitably chosen lattice points are further "projected down" onto the subspace to form the vertices of the quasicrystal. However, most of the known examples of $\mathsf{CNP}\$ quasi-tilings are Euclidean. In this talk, after presenting the main ingredients of the Euclidean prescription, we will extend it to Lorentzian spacetimes and develop Lorentzian $\mathsf{CNP}\$. This will allow us to discuss the first ever examples of Lorentzian quasicrystals, one in $\(1+1)\$ and another in $\(1+3)\$ -dimensional spacetime. Finally, we will argue why the latter construction might be relevant for *our Lorentzian spacetime*. In particular, we shall appreciate how the picture of a quasi-crystalline spacetime could provide a potentially new string-compactification scheme that can naturally accommodate for the hierarchy problem and the smallness of our cosmological constant. Lastly, we will comment on its relevance to quantum geometry and quantum gravity; first, as a conformal Lorentzian structure of no intrinsic scale, and second through the connection of quasicrystals to quantum error-correcting codes.

Lorentzian Quasicrystals and the *irrationality* of Spacetime

WATERLOO

Sotiris Mygdalas

Advisor: Latham Boyle (work in progress)

In Celebration of Lee Smolin – Lee's Fest @ PI – June 6, 2025

Quasicrystals through Cut-and-Project (CNP) (Euclidean Setting)

Coxeter Eigenbasis *is* a NP Frame! Coxeter (Point Set) = Point Set element infinite symmetry! (discrete Lorentz)

Inflation (scaling) symmetry.

Irrationality: No null-separated vertices.

... Causal Sets?Trade *Randomness* with *Symmetry*!... Q error-correcting codes?

1

Fitting the Universe in a Nutshell

String Theory: "We *really* live in 10 dimensions."

Fitting the Universe in a Nutshell

"Toroidal" Compactification $\mathbb{T}^{1,9} = \mathbb{R}^{1,9} / \text{II}_{1,9}$

Moore's "most symmetric" compactification [Finite in all Directions, hep-th/9305139]

... what about causality violations and CTCs?

Case I: slope $\in \mathbb{Q}$

closed curve: comes back to itself after some wrappings

Case II: slope $\notin \mathbb{Q}$

open curve: fills densely the torus

Fitting the Universe in a Nutshell

"Toroidal" Compactification

 $\mathbb{T}^{1,9} = \mathbb{R}^{1,9} / \mathrm{II}_{1,9}$

Moore's "most symmetric" compactification [Finite in all Directions, hep-th/9305139]

... what about causality violations and CTCs?

Enter Irrationality: no CTCs in 4D!

Still Feels *Irrational?* 3+1 reasons to think over lunch:

 Highly Symmetric Discrete Point Set in Spacetime with no intrinsic scale!

Q-Error Correcting Quasi-crystalline Spacetime?
"Most symmetric" string compactification possible!
Geometric Explanation of the Hierarchy of Scales.