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Abstract:

Modern quantum simulations methods often use a fictitious imaginary time introduced by Feynman to exactly transform static
quantum problems to dynamic imaginary time classical ones [1]. In addition to imaginary time simulation methods such as
centroid molecular dynamics and path integral Monte Carlo, one can apply this quantum-classical isomorphism to self-consistent
field theory (SCFT). An advantage of the field-theoretic perspective is that it can be exactly transformed into quantum density
functional theory (DFT), meaning that the theorems of DFT (Hohenberg-Kohn and Mermin theorems) prove an equivalence
between classical imaginary time SCFT dynamics and static quantum results [2]. Since imaginary time is assigned the same
properties as regular time, one can replace the imaginary time in the SCFT equations with real time (a Wick rotation), which
gives the equations of time-dependent DFT. The time-dependent DFT theorem (Runge-Gross theorem) then proves that one
obtains all results of standard quantum mechanics from this imaginary time classical starting point. These results make it very
tempting to consider treating imaginary time as an element of reality. This quantum reconstruction from imaginary time will be
discussed, including a speculative look at treating imaginary time in the context of special relativity, with a preliminary
comparison to the deformed special relativity of Magueijo and Smolin.

[1] D. M. Ceperely, Reviews of Modern Physics 67, 279 (1995)

[2] R. B. Thompson, Journal of Chemical Physics 150, 204109 (2019)
[3] ). Magueijo and L. Smolin, Physical Review D 67, 044017 (2003)
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The ring polymer quantum-classical isomorphism

In 1953, Richard Feynman showed that the path integral action describing a
quantum particle is isomorphic with the classical partition function of a ring
polymer

* This concept forms the basis of modern
quantum simulations methods such as THE
Centroid Molecular Dynamics, Ring
Polymer Molecular Dynamics and Path PEFSICAEREVLEW
Integral Monte Carlo TR —
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Atomic Theory of the 2 Transition in Helium

R. P. Fevauax
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(Received May 15, 1953)

It is shown from first principles that, in spite of the large interatomic forces, liquid Het should uhmu a
transition :m:zlozﬂu! to the transition in an ideal I«.n.e Einstein gas. The ex

Path integrals in the theory of condensed helium

um m It is next nr(uul
D. M. Ceperley* that the motion of ca¢ Atom thmup:h. the others is not opposed by a potential barrier because the others

may move out of the way. This just increases the effective inertia of the moving atom. This permits a
simpler form to be written for the partition function. A rough analysis of this form shows the existence of &
transition, but of the third order. It is possible that a more complete analysis would show that the transition
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One of Feynman's early applications of path integrals was to superfluid “He. He showed that
the thermodynamic properties of Bose systems nre exactly equivalent to those of n peculinr type

of interacting classical “ring polymer.” Using this mapping, one can generalize Monte Carlo
simulation techni ly used for classical systems to simulate boson systems. In this
review, the author introduces this picture of a boson superfluid and shows how superfluidity and
Bose o ion ifest th lves. He shows the excellent agreement between simulations and

experimental measurements on liquid nnd solid helium for such quantities as pair correlations, the
superfluid density, the energy, and the momentum distribution. Major aspects of computational
techniques developed for a boson superfluid are discussed: the construction of more accurate
approximate density matrices to reduce the number of points on the path integral, sampling
techniques to move through the space of exchanges and paths quickly, and the construction of
estimators for various properties such as the energzv. the momentum distribution. the superfluid

implied by the simplified partition function is actually like the experimental one.

INTRODUCTION

HE behavior of liquid helium, especially below

the X transition, is very curious.! The most suc-
cessful theoretical interpretations? so far, have been
largely phenomenological. In this paper and one or two
to follow, the problem will be studied entirely from first
principles. We study the quantum-mechanical behavior
of strongly interacting atoms of He'. We shall try to
show that the main features of these curious phenomena

incorrect. We shall argue that London’s view is essen-
tially correct. The inclusion of large interatomic forces
will not alter the central features of Bose condensation.

The principal point is an argument which shows that
in a liquid-like quantum-mechanical system the strong
interactions between particles do not prevent these
particles from behaving very much as though they move
freely among each other.

The exact partition fur tmu

ritten down as
T
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®For u = s (where s is the contour
describing the coarse-grained path
of a polymer), this is the classical
partition function of a ring polymer
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EXACT EXPRESSION FOR THE PARTITION FUNCTION

To study the thermodynamic properties we must
calculate the partition function

0=Y: exp(—BE)), (1)

where =1/k7T and E; are the energy levels of the
system. In this form the calculation appears hopelessly
difficult because the energies E; are eigenvalues of such
a complex Hamiltonian H. The expression for Q is
equivalent to the trace of the operator exp(—gBH). In
Eq. (1) the trace is written in a representation in which
H is diagonal. We shall prefer to use the coordinate
representation to describe the trace.

To illustrate how this is done, we take the example
of a one-dimensional system, of coordinate ¥ and Hamil-
tonian p?/2m~+V (x)=H. The trace of exp(—-BH) is
then Q= fdz(z| e #¥|z). The matrix element (z]e##|32)
is similar in form to the matrix element (z|exp(—itH/
h)|z) which represents the amplitude that the system
initially at x=3, is at time ¢ also at the point x=z. This
latter is® the sum over all paths [signified by
S+ - Dx(t) ] which go from z to z of exp(iS/k), where
S is the action Sf![3ma*—V(x())]dt. If we replace
it/h by B, we are lead to expect

‘ brm fdx\?
(?:C"ﬂﬂjz)=f exp ﬁf ——--(“)
ir 0 2}22 d!f

- V(;r(ﬂ))er } Dx(u), (2)

the variable #=1i/k replacing ¢, and the various signs
adjusted accordingly. The integral /. is to be taken

Aan all fwntantariae Anah dhod /) v and Wl 4 Té ia

SYIIUINELrICdl SLdLISLICS. 111
taken only over symme
means that if the initial c
final coordinates need no
some permutation of thes

Q=N Zfd”z,;f exp
P trp
+E
ij

where the integral /;,p
x; () of all the particles su
That is, the final coordin:
permutation P of the initi
taken over all permutatiol
configurations z;.

In Eq. (5), m is the mas
is the mutual potential of
by R. The forces betwee
fairly accurately two-boc
given by Slater and Kirkw
tion of maximum depth
at T=7°K) at radius abo
at the transition is (3.62
equivalent to k7 for 7= 3"
attraction at the average
violent repulsion if the a
than 2.6A (V=0 at 2.6A)

The expression (5) is a1
expression for the partitic
imaginary unit ¢ appears)
a qualitative understandi
helium.

The quality # is of cour:
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®For u = s (where s is the contour
describing the coarse-grained path
of a polymer), this is the classical
partition function of a ring polymer

= For u = ff (where f = 1/kgT), this is
the partition function of a quantum
particle

Pirsa: 25060083

dalldlyzZed. 11115 15 UOULIC 1 LIIC [IEXL paper.”
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SYIIUINELrICdl SLdLISLICS. 111
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means that if the initial c
final coordinates need no
some permutation of thes

Q=N Zfd”z.:f exp
P trp
+2
ij

where the integral /;,p
x; () of all the particles su
That is, the final coordin:
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taken over all permutatiol
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In Eq. (5), m is the mas
is the mutual potential of
by R. The forces betwee
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given by Slater and Kirkw
tion of maximum depth
at T=7°K) at radius abo
at the transition is (3.64
equivalent to k7 for 7= 3"
attraction at the average
violent repulsion if the a
than 2.6A (V=0 at 2.6A)

The expression (5) is a1
expression for the partitic
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a qualitative understandi
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wFor u = s (where s is the contour
describing the coarse-grained path
of a polymer), this is the classical
partition function of a ring polymer

=For u = f# (where f = 1/kgT), this is
the partition function of a quantum
particle

=/} is called the “imaginary time”

wFor u = it/ h, this is the matrix
element of the quantum action
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EXACT EXPRESSION FOR THE PARTITION FUNCTION
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calculate the partition function
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 Instead of polymer-based simulations, one can use polymer self-consistent field
theory (SCFT)

« SCFT is a well known methodology (thousands of papers published on it) which
uses the same Feynman path integral

e Advantage of SCFT: The equations of SCFT can be converted exactly into
those of quantum density functional theory (DFT)

e DFT is an even better known methodology (hundreds of thousands of papers
published on it)

* The Hohenberg-Kohn theorems and the Mermin theorem of DFT prove that
SCFT derived from the classical path integral partition function reproduces all of
static quantum mechanics (QM)
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« What about time?

» Reconstruct QM by starting with assumption of classical, distinguishable
trajectories for particles, although not obeying Newtonian dynamics

« Example: de Broglie-Bohm theory

e Postulate thermal “dimension” that behaves exactly like time dimension,
except for being cyclic and imaginary.

e The principle of indifference, or equivalently extending classical concept of
structureless particle to structureless “threads” (imaginary time trajectories)
means that “classical” partition function must be given by Feynman’s path
integral
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« SCFT, and thus DFT, drop out of path integral

« Since cyclic imaginary time was assumed to behave just like real time, we also
automatically have the dynamics

« Wick rotate SCFT equations and turn off cyclicity

* We get expression for the quantum weak value and the equations of time-
dependent DFT

* The Runge-Gross theorem of TDDFT guarantees this reproduces all of non-
relativistic QM

* We have reconstructed a de Broglie-Bohm related/inspired theory using one
assumption (cyclic imaginary time) in addition to classical concepts

* Only get TDDFT equations if time has a direction — incompatible with illusory
time or block universe
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e Can this be tested?

 DFT theorems mean there is a one-to-one mapping between QM and
“classical” imaginary time rings

* Ring polymer SCFT can make no predictions within QM that can distinguish the
“classical” 5D picture from 4D QM

Speculation:
» Special relativity: ds* = — c?dt* + dx* + dy* + dz* + h*c*dp?

Immediate problem: variable speed of light!
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- Special relativity: ds* = — c?dt* + dx* + dy* + dz* + h*c*dp?
Immediate problem: variable speed of light!

e Passing resemblence to doubly special (or deformed) relativity of Amelino-
Camelia; Magueijo and Smolin

e Has two maximal quantities: on both velocity and energy

Magueijo, J.; Smolin, L. (2002). "Lorentz invariance with an invariant energy scale". Physical Review Letters. 88 (19): 190403

Thank you!
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