Title: The problem of time and evolving constants of motion: the cosmological case

Speakers: Saeed Rastgoo

Collection/Series: Lee's Fest: Quantum Gravity and the Nature of Time

Date: June 06, 2025 - 10:35 AM

URL: https://pirsa.org/25060081

Abstract:

I present a cosmological toy model of the resolution of the problem of time based on the Page-Wootters formalism but written in terms of evolving constants of motion. The use of these quantities resolves the issues, e.g., the incorrect propagators, etc., of the Page-Wootters formalism, and points to some interesting preliminary results.

Pirsa: 25060081 Page 1/15

The Problem Of Time And Evolving Constants Of Motion: The Cosmological Case

Saeed Rastgoo (University of Alberta)

with J. Roberts

Lee's Fest

6/June/2025

Pirsa: 25060081 Page 2/15

The Problem of Time

• Dirac observables O are frozen in t

$$\dot{0} = \{0, H\} = \delta 0 = 0$$

• In the quantum regime: $\hat{H}\Psi=0$ \Rightarrow no Schrodinger equation with $\frac{\partial\Psi}{\partial t}$ on the RHS

Pirsa: 25060081 Page 3/15

The Method: Big Picture

Combination of [Gambini, Porto, 2001; Gambini, Porto, Pullin, Torterolo, 2009]

- I. Page-Wootters relational formalism [Page-Wootters, 1983]
- 2. Evolving constants of motion (parametrized Dirac observables) [Rovelli, 1991]

Pirsa: 25060081 Page 4/15

Page-Wootters Formalism

Page-Wootters formalism: Quantum subsystem $Q \subset U$ evolves w.r.t. quantum clock subsystem $T \subset U$

- Construct \hat{Q} , \hat{T} as operators on a Hilbert space $\mathscr{H} = \mathscr{H}_T \otimes \mathscr{H}_Q$,
- Quantum conditional probabilities (using Lüder's rule):

$$P\left(Q=Q_{0}ig|T=T_{0}
ight)=rac{\mathsf{Tr}\left[\hat{\mathcal{P}}_{T_{0}}\hat{
ho}\hat{\mathcal{P}}_{T_{0}}\hat{\mathcal{P}}_{Q_{0}}
ight]}{\mathsf{Tr}\left(\hat{
ho}\hat{\mathcal{P}}_{T_{0}}
ight)}$$

- $\hat{\rho}$: **density operator** of the whole system U
- $\hat{\mathcal{P}}_{Q_0}=\ket{Q_0}ra{Q_0}$: **projection operator** corresponding to eigenvalue Q_0
- $\hat{\mathcal{P}}_{T_0} = \ket{T_0} ra{T_0}$: **projection operator** corresponding to eigenvalue T_0

Pirsa: 25060081

Problems with Page-Wootters Formalism

 Wrong propagator of a single-particle: the Page-Wootters formalism yields no motion! [Kuchar, 2011]

$$K_{\mathbf{x}_f,T_f;\mathbf{x}_i,T_i} = \delta (\mathbf{T} - \mathbf{T}') \delta (\mathbf{x} - \mathbf{x}')$$

instead of the correct one

$$K_{\mathsf{x}_f,\mathsf{T}_f;\mathsf{x}_i,\mathsf{T}_i} = \left[\frac{2\pi i \left(\mathsf{T}_f - \mathsf{T}_i\right)}{m}\right]^{-1/2} \exp\left[\frac{\mathrm{i} m \left(\mathsf{x}_f - \mathsf{x}_i\right)^2}{2 \left(\mathsf{T}_f - \mathsf{T}_i\right)}\right]$$

• Violation of the Constraints: $\hat{\mathcal{P}}_{Q_0}$, $\hat{\mathcal{P}}_{T_0}$ do not commute with $H \Rightarrow$ leaving constraint surface after acting

Pirsa: 25060081 Page 6/15

Remedy of Page-Wootters: ECM

- It turns out using evolving constants of motion (ECM) will fix all these issues [Gambini, Porto, 2001; Gambini, Porto, Pullin, Torterolo, 2009]
- ECM (parametrized Dirac observables)

$$O(t) \Rightarrow \{O(t), H\} \approx 0$$

Pirsa: 25060081 Page 7/15

The Montevideo Interpretation of QM

- Choose \hat{Q} , \hat{T} to be **quantum evolving constants of motion**, instead of values of fields which in a totally constrained systems are not physically observable [Gambini, Porto, 2001; Gambini, Porto, Pullin, Torterolo, 2009]
- \hat{T} and \hat{Q} interact (do not commute): (more) realistic model [Gambini, Pullin, Rastgoo, Roberts, to appear soon]
- The probability becomes

$$P\left(Q = Q_0 \middle| T = T_0\right) = \frac{\int_{-\infty}^{\infty} dt \text{Tr}\left[\hat{\mathcal{P}}_{T_0}(t)\hat{\rho}\hat{\mathcal{P}}_{Q_0}(t)\hat{\mathcal{P}}_{T_0}(t)\right]}{\int_{-\infty}^{\infty} dt \text{Tr}\left[\hat{\mathcal{P}}_{T_0}(t)\hat{\rho}\right]}$$

• "Time" is quantum! Can be discrete

Pirsa: 25060081 Page 8/15

The Model [Gambini, Pullin, Rastgoo, Roberts, to appear soon]

FLRW cosmology

$$ds^2 = -dt^2 + a^2(t) \left(dx_1^2 + dx_2^2 + dx_3^2 \right)$$

with two scalar fields ϕ_i , i = 1, 2 with Hamiltonian constraint

$$\mathcal{H} = -\frac{6}{\gamma^2} c^2 \sqrt{|p|} + \frac{8\pi G}{|p|^{\frac{3}{2}}} \sum_{i=1}^{2} p_{\phi_i}^2$$

where

$$c = \gamma \dot{a},$$
 $|p| = a^2$

Dirac Observables

From two of EoM

$$\dot{p}_{\phi_i} = \{p_{\phi_i}, N\mathcal{H}\} = 0, \qquad i = 1, 2.$$

immediately see two Dirac Observables O_1 , O_2

$$O_i = p_{\phi_i}$$
 $i = 1, 2$

Defining

$$\Pi_1 = -\phi_1, \qquad \qquad \Pi_2 = -\phi_2$$

leads to a 4D phase space

$$\{O_i, \Pi_j\} = \delta_{ij}, \quad i, j = 1, 2$$

Evolving Constants of Motion (ECM)

Identify

$$t = \frac{\phi_1}{p_{\phi_1}}$$

Out of the phase space variables O_1 , O_2 , Π_1 , Π_2 , construct a clock ECM

$$T(t) := p_{\phi_1}\phi_2 = O_2\Pi_1 - O_1\Pi_2 + O_1O_2t$$

and another ECM (the one measured against the clock)

$$Q(t) := p_{\phi_1} p_{\phi_2} \ln \left(|p| \right) = \alpha \sqrt{O_1^2 + O_2^2} \left(O_2 \Pi_1 + O_1 O_2 t \right)$$

where $\alpha = 4 \mathrm{sgn}(c) \mathrm{sgn}(p) \sqrt{\frac{\pi G}{3}}$

Pirsa: 25060081

Evolving Constants of Motion (ECM)

Identify

$$t = \frac{\phi_1}{p_{\phi_1}}$$

Out of the phase space variables O_1 , O_2 , Π_1 , Π_2 , construct a clock ECM

$$T(t) := p_{\phi_1}\phi_2 = O_2\Pi_1 - O_1\Pi_2 + O_1O_2t$$

and another ECM (the one measured against the clock)

$$Q(t) := p_{\phi_1} p_{\phi_2} \ln (|p|) = \alpha \sqrt{O_1^2 + O_2^2} (O_2 \Pi_1 + O_1 O_2 t)$$

Schrödinger representation:

$$T \stackrel{\text{I}}{\rightarrow} \hat{T}$$

$$Q \to \! \hat{Q}$$

The Probability

A very preliminary result:

Pirsa: 25060081 Page 13/15

Summary

- A Relational solution to the problem of time based on Page-Wootters formalism: Montevideo interpretation
- Use of evolving constant of motion: free of issues of Page-Wootters formalism
- Clock and "other quantity" are both quantum, observable, and can interact
 with each other
- Complete results to follow soon

Pirsa: 25060081 Page 14/15

Thank You Lee!

Thank you Lee for all your great contribution to science and the scientific community!

and, Happy Birthday!

Pirsa: 25060081 Page 15/15