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Jim Baggott:

Lee, you and Carlo have done so much physics together.
And yet you so often disagree on so many things.

How is this possible?

Lee:

If we agreed on everything,

one of us would be superfluous.
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Knot Theory and Quantum Gravity

Carlo Rovelli
Sezione di Roma, Institute Nazionale di Fisica Nucleare, University of Rome, Rome, taly

und
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Department of Physics. Yale University, New Haven, Connecticur 06520
(Received 13 June |983)

A mew representation for quantum general relativity is deseribed, which is defined in terms of func-
tionals of sets of loops in three-space. In this representation exact solutions of the quantum constraints
may be obtained. This result is related to the simplification of the constraints in Ashtekar's new formal-
ism. We give in closed form the general solution of the diffeomorphism constraints and a large class of
solutions of the full set of constraints, These are classified by the knot and link classes of the spatial

three-manifold.

PACS numbers: 04.60.+n, 02.40.+m

Despite the failure of standard perturbative quantiza-
tions, many people have argued that quantum general re-
lativity may still exist because strong-coupling effects at
short distances contradict the assumption, which under-
lies perturbation theory, that quantum geometry may be
understood in terms of small fluctuations around a classi-
cal background spacetime.! One approach to the investi-
gation of this hypothesis is canonical quantization, in
which the splitting of the metric into a classical back-
ground part and a fluctuating quantum part is not
made.? In the canonical formulation of general relativi-
ty, for the case of closed space E, the Hamiltonian is
weakly vanishing and in the quantum theory the dynam-
ics is expressed by the quantum constraint equations.

In this Letter we describe a new representation of
canonical quantum general relativity, called the loop rep-
resentation, in which exact, nonperturbative, solutions to
the constraint ¢quations may be obtained.”’ In particu-
lar, we describe here the following results.

(1) The entire space of states annihilated by the spa-
tial diffeomorphism constraints D, (x) is found in terms
of an explicit countable basis. The elements of this basis
are in one-lo-one correspondence with the gencralized
link classes of the 3D manifold I These are the
equivalence classes, under Diff(E), the identity-con-
nected component of the diffcomorphism group of X, of
sets of piecewise differentiable loops in £

(2) Among these states are some which are also an-
nihilated by the Hamiltonian constraint @{x}, and are
thus exact physical quantum slates of the gravitational
field. Included in these is a sector whose basis is in one-
to-one correspondence with the subset of the generalized
link classes of £ which are based on sets of smooth,
nonintersection loops. These are the well studied ordi-
nary link classes, whose classification is the subject of
knot thmr_l,'.‘

The loop representation is a development of Ashtekar’s

reformulation of general relativity” and is motivated by
the discovery® of a set of solutions of the Wheeler-
DeWitt equation related to loops. In Ref. 7 it was first
introduced by means of a functional transform from the
self-dual representation.® Here, following Isham’s ideas,
we define directly the loop representation as the quanti-
zation of a suitable Poisson algebra of nonlocal classical
observables.

We proceed by describing the loop representation, we
then explain why it is a quantization of general relativi-
ty, and, finally, we describe how the solutions are found.

Let I be a compact three-manifold, of arbitrary topel-
ogy, without metric or connection structure. Let Ly be
the space of piecewise differentiable, closed, parame-
trized, nondegenerate curves in X (called in what follows,
loops, and denoted by greek letters 7,n.... ) and let /ity
be the space of the (unordered) set of ¢lements of Ly
(called multiple loops and denoted {7.inl,.. . ). Let &
be the space of complex-valued functions .A[{y] on s
which (1) are invariant under reparametrization and in-
version of the loops, and {(2) satisfy, for any y and 5 with
a common base point, the equation Alyén]+.Aly ~'inl
=JAlly,nll, where y 's)=y(1—5) (s€0.1] is the
loop parameter) and y#7 is the loop made by going once
round ¥ and then once round n before closing. (As in
spin network formalism,” this is an implementation in
the loop space of the fundamental 1wo-spinor identity,
5850 = 5058 = 4ceP)

On this space & there exists an algebra of regulated
lincar operators which is a representation of a complete,
ohservable algebra for general relativity. The algebra,
called the T algebra, is graded by the nonnegative in-
tegers. The zero elements are defined for every loop y by

Tyl Al I =Alyuint]
These are a kind of lowering operator. For 2= 1 the
operators are denoted 77" Myl L s)
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We define a new representation for quantum general relativity, in which exact solutions of the
quantum constraints may be obtained

The representation is constructed by means of a noncanomcal graded Poisson algebra of
classical observables, defined in terms of Ashiekar's new variables. The observables in this algebra
are nonlocal and involve parallel transport around loops in a three-manifold X The theory is
quantized by constructing a linear representation of a deformation of this algebra. This represen-
tation is given in terms of an algebra of linear operators defined on a state space which consists of
functionals of sets of loops in ¥ The construction is general and can be applied also o
Yang-Mills theories.

The diffeomorphism constraint is defined in terms of a natural representation of the diffcomor-
phism group. The hamiltonian constraint, which contains the dynamics of quantum gravity, is
constructed as a limit of a sequence of ohservables which incorperates a regularization prescrip
tion. We give the general solution of the diffeomorphism canstraint in closed form. 1t is spanned
by & countable basis which is in one-to-one correspondence with the diffeomorphism equivalence
classes of multiple loops, which are a generalization of the link classes studicd in knot theory.
Then we exphiently construct, in ¢losed [orm, a large space of soluton of the entire set of
constraints, including the hamiltonian constraint. These turn out 1o he classified by the ordinary
knot and link classes of X

The space of solutions that we Fnd is a sector of the physical states space of nonperturbative
quantum peneral relativity. The failure of perturbaton theory is thus shown to be not relevant to
the problem of the cxistence of a nontrivial physical state space in guantum gravity. The
relationship hetween this new loop representation and the self-dual representation of Ashtekar is
illuminated by means of a functional transferm between states in the two representations.
Questions of the completeness of the solution space, the meaning of the physical operators and the
physical inner product, are discussed, bur not, so far, resolved

05503213 790 /303,50 @ Elsevier Science Publishers B.V.
{North-Iolland)
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Wearving a Classical Metric with Quantum Threads

Abhay Ashtekar, """ Carlo Rovelli, ™ and Lee Smolin ™
" Departmient of PRysies, Syracuse University, Syracase, New Vork 13244-1136
@ Deparimens af Physics, Unicersity of Pieeshurgh, Pirtsburgh, Pennsyloania | 3260
and Dipartimenio di Fisica, Universita di Trenten, Trento, faly
amd Istiruro Nazionale di Fistc Nucleare, Sezione il Padova, Padova, fialy
{Received 14 April 1992)

Results that illuminate the physical interpretation of states of nonperturbative quantum gravity are
obtained using the recently introduced loop variables. It is shown that (i) while local operators such as
the metric at a point may net be well defined, there do exist nonfocal operators, such as the area of a
iven twosurface, which can be regulated diffeomorphisa invariantly and which arc fnite withour re-
normalization; (i) there exist quantum states which appraximale a given metric at lurge scales, but such
states exhibit a diserete structure at the Planck scale.

Ly 1992

PACS numbers: 94.60 +n

It is by now generally accepted that perturbative ap-
proaches 1o quantum gravity fail because they assume
that spacc-lime geometry can be approximated by a
smooth continaum at all seales. What is needed are nen-
perturbative approaches which can predict— rather than
assume— what the true nature of the microstructure of
this geometry is. In such an approach, background ficlds
such as a classical metric or a connection cannet play a
Tundamental role; quantum theory must be formulated in
a diffeomorphism-invariant fashion. An important task
in these programs is then to introduce techniques needed
to describe geometry and to “explain™ from first princi-
ples how smooth geometries can arisc on macroscopic
scales.

Over the past five years, two avenues have been pur-
sued 1o test if quantum general relativity can exist non-
perturbatively, The first is based on numerical simula-
tions (1], while the second is based on canonical guantiza-
tion [2-6]. This Letter concerns the second approach.
While the canonical approach itself was introduced by
Dirac in the late 19505, the recent work departs from the
early treatment in two important ways: (i) It is based on
a mew canonically conjugatc pair, the configuration vari-
able being a connection [2.5); and (i) it uses a new repre-
sentation in which quantum statcs arisc as suitable func-
tions on the space of closed loops on a (spatial) 3-
manifold [2,3.6]. The new ingredients have led to techni-
cal as well as conceptual simplifications which, in turn,
have led to 2 varicty of new results. In particular, these
methods have opened up bridges between quantum gravi-
1ty and other areas in mathematics and physics such as
knot theory, Chern-Simens theory, and Yang-Mills the-
ory.

The purpose of this Letter is 1o report en the picture of
quantum geometry that arises from the use of the loop
variubles. To explore the geometry nonperturhatively.
musl first introduce operators that carry the metric infor-
mation and regulate them in such o way that the final
operators do ot depend on any background structure in-
troduced in the regularization. We will show that such
operators do cxist and that they are finite without renor-

malization. Using these operators, we seek nonperturba-
tive states which can approximale a given classical
geometry up terms ©Up/L), where o is the Planck
length and L is a mucroscopic length scale, lengths being
defined by the given metric. We find that such states do
exist but that they exhibit a discrete structure al the
Planck scale fp. Such a result was unticipated on general
grounds since the 19305, Indeed. there exist 4 number of
quantum gravity programs that begin by postulating
discrete structures at the Planck scale and then attempt
1o recover from it the known macroscopic physics (7]
The key difference L. in our approach, discreteness is
arrived at by combining general relativity with quantum
mechanics using loop variables.

In this Letter, we will only sketch the main ideas in-
volved; details will appear elsewhere [8],

Let us begin with the classical phase space. The
configuration variable A% is a complex SU(2} connection
and its conjugate momentum £7, the mathematical ana-
log of the electric ficld in Yang-Mills theory, is a triad
with density weight 1 [SI. (Throughout we will lel a,
b, ... denote the spatial indices and 4/, . .., the internal
indices, A tilde over a letter will denote a density weight
1.} The first step is the introduction of loop variables [6]
which are manifestly SU(2)-gavge-invariant functions on
the phase space. The configuration variables are the Wil
son loops: Given a closed loop y on the 3-manifold £, we
set

Tin = eGP a,ae. w
where (7 is Newton's constant.  (Throughout, we use the
2-dimensional representation of the gauge group to evalu-
ate traces.) Variables with momentum dependence are
constructed by inserting Ef at various points on the loop
before taking the trace. Thus, for example, the Joop vari-
able quadratic in momenta is given by

T [ply,) = & Trli [snwa;_f'A.-rr']E"(y')

x [zﬂmo Ay ]:; ()
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st

am Hamilionian which svelves the grav
af a seular field is defined through s regulurization procedure bused on the loog represen-

digld acvording 1o time as measured by con-

tation. and is shown to be finite und diffeomorphism invariant. The problem of constructing this Humil:
tnian i reduced o o combinatorial and algebraic problem which involves the rearrangements of lines
thraugh the vertices of arbitrary praphs. This procedure also provides 4 constewction of the Hamiltonisn
construint us 4 finite operator on the space of dilleomorphism invariant states as well as a construciion of
the aperater corresponding 10 the spatial volume of the Universe

PACS numbers: (4 66w

One of the main problems of nenperturbative quantum
gravity hus been how o realize physical time evolution in
the absence of a fixed background spacetime geomelry
11]. One solution to this problem, which has been often
discussed. 15 Lo use a matter degree of freedom to provide
u physical clock [2.3], and represent evlution as change
with respect ta it In this Letter we show that it is possi-
hle te explicitly implement this proposal in the full theory
of quantum general relativity, using the nonperturbative
approsch based on ihe loop representation [4-T1 We use
u scalar field us a clock as supgested in several recent pu-
pers [8]. und we show that it is pessible o construct the
Humiltoniun operator A that gives the evolution in this
clock time.

We construet the Hamilonian operator A by using
regularization technigues recently introduced [6.9] for
diffecomorphism invariant theories. The main result that
we oblain is that the operator H. although constructed
through @ regularization procedure that breaks diffen-
morphism invariance, is nevertheless diffeomorphism in-
varianl, background independent. and (as we have argued
slsgwhere [9] is implied by these conditions} finite. Tt fol-
lows that s well defined on the space, V, of the
dlff:umurphlsm invariant states of the gravitutional field.

¥ is spanned by the basis given by the generalized
knot clusses [4] (dilfeamorphism equivalence classes of
imite sets of loops in E. the three-dimensional spacs man-
ilold). #1 is represented by un infinite dimensional matrix
in knol spice. We present here a procedure for compui-
ing all the matrix elements of the Hamillenian # in koot
spave. This procedure is purely combinatorial and alge-
braic. Thus, our main resull is the reduction of the prob-
lem uf vumputing the physical evalution of the quantum
gravitational field with respest 10w clock o a problem in
araph Theary and comhinatarics.

We begin by introducing the scalar field 70x), whose
three-surfaces of constant values may be taken, under ap-
propriate circumstances, le represent time (8L We
denote the physical regime in which this can be done {in

446

which the seular field grows monotonically everywhere an
£} us the clock regime. The formalism developed here is
meuningful only within this regime. 1f we denote its con-
jugite momentum by x(x), the Hamillonian constraint is

flx)=

A T, T+ 6y m
2 2

where u is o constant. The gravitational contribution hus
dard Form Oy =Cpa+ A, where =
RS and g =det(ge). Here A is the cosmological
constant, und all other symbols huve the usual meuning in
the Ashiekar formalism [10]. We then restrict the free-
dom of choosing the time coordinute by fiving 1he gauge
8,7 =0 This implics that the lapse is V() =a/rlx) for
some constanl @ and that all of the infinite number of
Hamiltonian constraints ©0x) turn out o he gauge fixed
exeept one, which is

€ 5} =2
S5 =,
In the quantum theory the diffeomorphism nvariant
states are then of the form %(lat. 7], where la] indicates
4 generalived knot class und (he real number 7 is the con-
stant value of the time. These states satisfy a Schri-
dinger-type equation (kLT Y =ThTE where H i
the quantum operator corresponding 10 1he observable

- [ &
We now praceed to construct the quantum operalor
We regularize the integral by writing it as a limit of 4
sum. und. in addition, we regularize cach operator prod-
ucl. We write

H= lim Zr.v' =

N0

Agi 4
where we have divided the spatial manifold ¥ into cubes
of siee L according 10 an urbitrary set of fxcd Euclidean
coordinates, and the sum is over these cubes, lubeled T
The guuntities & and A are parameters involved in the

Chapter 4
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Dynamics
e H¥ =0

¢ regularization = in the limit in which the cut of removed
H is finite on diff-invariant states

» H=BEE, regularization: B=1lim — ., U(A)

H(l (X) T o= 0
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The theory is naturally ultraviolet finite

Far from being inconsistent, Gr and QFT conspire to solve each others problems
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quantum gravity
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Abstract

‘We study the operator that corresponds to the measurement of volume, in non-perturbative quan-
tum gravity, and we compute its spectrum. The operator is constructed in the loop representation,
via a regularization procedure; it is finite, background independent, and diffeomorphism-invariant,
and therefore well defined on the space of diffeomorphism invariant states (knot states). We
find that the spectrum of the volume of any physical region is discrete. A family of eigenstates
are in one to one correspondence with the spin networks, which were introduced by Penrose in

a different context. We pute the cormesp g p of the sp and exhibit the
eigenvalues explicitly. The other eigenstates are rel to a generalization of the spin networks,
and their eig lues can be P by di izing finite di matrices. Furthermore,

we show that the eigenstates of the volume diagonalize also the area operator. We argue that
the spectra of volume and area determined here can be considered as predictions of the loop-
representation formulation of quantum gravity on the outcomes of (hypothetical) Planck-scale
sensitive measuremenis of the geomelry of space.

1. Introduction

In spite of recent progress, rescarch in quantum gravity[ 1] has produced few precise
physical predictions, against which the theory might be, at least in principle, experi-
mentally tested. In this paper, we show that, under certain assumptions, predictions for
the spectra of certain geometric quantities can be derived from the quantum theory of

' E-mail address: rovelli@vms.cis.pitt.edu.
* E-mmail address: smolin@phys psu edu.

Elscvier Science B.V.
S50 0550-3213(95}00150-6
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Can we compute eigenvalues non perturbatively?

Ves!

Physical geometry is discrete at the Planck scale,
As a direct result of taking GR and QT together.
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Spin networks and quantum gravity

Carlo Rovelli*
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and School of Natural Scicnce, Institute for Advanced Study, Princeton, New Jevsey 08540
{Received & May 1995)

We introduce a now basis on the state space of nonperturbative quantum gravity, The states
of this basis are lnearly independent, are well defined in both the loop representstion and the
connection representation, snd are labeled by a generalization of Penrose’s spin networks, The new
s fully reduces the spinor identities [SU{2) Maodelstum identities] and simplifies caleulations in
nonperturbative quantum gravity. In particular, it allows a simple expression for the exact solutions
of the Hamiltonian constraint [Wheeler-DeWitl equation) that have been discovered in the loop
representation. The states in this basis dingonalize operators that represent the threc-geometry of
space, such as the ares and the volume of arbitrary surfaces and regions, and therefore provide a
discrete picture of quantum geometry at the Planck scale,

PACS number(s): 04.60 Ds, 75.25.+&

I INTRODUCTION

The loop representation [1,2] is a formulation of quan-
tum field theory suitable when the degrees of freedom
of the theory are given by a gauge field, or a connec-
tion. This formulation has been used in the context of
continuum and lattice gauge theory [3], and it has found
a particularly effective application in quanmtum gravity
[244], beeause it allows a description of the diffeomor-
phism invariant quantum states in terms of knot theory
[2,5), and, at the same time, because it partially dingonal-
izes the quantum dynamics of the theory, leading to the
discovery of solutions of the dynamical constraints [2,6].
Recent results in quantum gravity based on the loop rep-
resentation include the construction of a finite physical
Hamiltonian operator for pure gravity [7] and fermions
[8]. the computation of the physical spectra of area [4]
and volume [10], and the development of a perturbation
scheme that may allow transition amplitudes to be explic-

Iy [7.11 A math ically rigorous for-

AL

approach to non-Abelian Yang-Mills theories

Applications of the loop however, have
been burdened by complications arising from two tech-
mical nuisances. The first is given by the Mandelstam
identities, because of which the loop states are not inde-
pendent and form an overcomplete basis. The second is
the presence of a certain sign factor in the definition of
the fundamental loop operators T for » > 1. This sign
depends on the global connectivity of the Joops on which
the operator acts and ohstructs a simple local graphical
description of the operator's action. In this wark, we de-
scribe an elegant way ta overcome both of these compli-
cations. This comes from using a particular basis, which
we dencte as spin network basis, since it is related to the
spin networks of Penrose |16]. The spin network basis
has the following properties: (i) It solves the Mandel-
stam identities; {ii) it allows a simple and entirely local
graphical caleulus for the T™ operators; (iii] it diagonal-
izes the area and volume operators, The spin network
basls states, being eigenstates of operators that corre

ation of atum field theori
space: is & space of connections, inspired by the loop rep-
resentation, hus been recently developed [13,14] and the
ematics of the theory Is now on a level of rigor com-
parable to that of constructive quantum field theory [15]
This approach has also produced interesting mathemat-
ical spinoffs such as the construction of diffeomorphism
invariant generalized messures on spaces of connections
[14] and could be relevant for a constructive ficld theory

5 whose ion

“Electronic address: rovellilivims.cis.pitt eda
*Electronic address: smolin 83phys.psu.cdn
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spond 1o of the physical geometry, provide
i physical picture of the three-dimensional quantum ge-
ametry of space at the Planck-scale level.

The main idea hehind this construction, long advo-
cated by Loll [17], is to identify a basis of independent.
loup states in which the Mandelstam identities are com-
pletely reduced. We achieve such a result by exploit-
ing the Facl, that all irreducible representations of 8U(2)
are built by ized powers of the f ] rep-
resentation, We will show that in the loop representa-
tion this translates into the fact that we can suitably
antisymmetrize all loops overlapping each other, with-
out losing generalily. More precisely, the (suitably] anti-
symmetrized loop states gpan, bul e ool overspan, the
Kinematieal state space of quantum gravity.
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Page 15/19



Pirsa: 25060030

ieivalent loaps. For instance, io the example sbove the

intersection Ixuwen o and 7 in the loop oy 8-y

i trivalent U form a vingle set, of aver-

Tappig m,...-g.m..u [ sitngle rope) emerging from the
il deal with

in the Alﬂﬁ!nl’h‘

We may bope to reduee the degenesacy by repl
I e el e s i o sl Ay
metrized combi on, plis “tails" that can be got ri
of by means of the retzacing dentity. In the example
wonss 'nlrmd nlm-z‘ for instance, we can reduce the state

“1[ ta & linear combination of the twa states
Setotta )

+ Hl

2

S0 we may hope that any time we have two parallel lioes,
we could use the spinor identity as fallows:

(1=l X0 ] X
=i+ uzn

R

Unfortunately, this doss oot work. To understand why,
consider a loop a and an open segment 7 that starts and
ends in two different points of o, Denote by oy ....A
oz the Lwe segments in which the two (ntersections
7 partition o, Then we have, die to the spinor nml
rteacing ide

113}

fal = o oy Uy vl 4 (a oyoa oyl =0, (14)

{o|<a|-< a |

If we want ta pick two Independent linear combinations,
we have o choase the aypmmetric combination (el + {oy
7 Uy 9], and ant the entisymmeiric one as before,
Namely, we have to choose

Lol

2+{@|={an|.{ @ |
(18]
“Thus, ta pick the independent combination of loop »lnku.
we have to antisymmetrize 4
bave to symmetrize it in the other case, In g!mrcl. the
chaice between symmetrization and antisymmetrization
«can anly be warked out by writing out explicitly the full
ateern of roatings in the multiple Joop. In other words,
Eq. (13} is in general wrong if taken as a calculation rule
that can be used in dealing with any loop state. Mare
precisely, at every intersection, the spinor identity pro-
vides a linear relation between the three multiple laops
‘obtained by replacing the intersection with the three pos.
sible rootings through the loop

XX X

07y

bt the sign in front of cach term depends o the glahal
routing of the loops.

There is a simple way cut of this difficulty, which does
imor identities among, trivlent
Ta order to deter-

et signs of the varions terms in Eq. (17),
we have ta take the global seuting o account. There
are only three poasibilities:

TS
00 -

0000~
886G

15
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eounts the terms of the symmetrization. Let us analyze
this state jn some detail. For ey link | with colos pi,
there aro p pasalle]l propagatars Dy A] slong: the
cach one in the spin-} representation, that enter the
inition of A1, Let us indicate tensors’ indices expli
tly; we introduce spinor indices 4, B, ... with value 0,1
The eomnection A b components 4.2, which form an
s1i2.67) matrix, and its pzalle] propagator along a link {
s matrix Uja® in the SL{2.C) group. Sinoe SLI2C)
8ke group of matcices with unit determinact, we have

detlls + Jeape™Uic e = 1, (34)

whete eaq s the totally antisymemet
wbject defined by

twardinensions]

= (35)
Qe can wiite (4] xplicitly i e of the pacal-
Ie1 propagatars L4 * the objects r4p and 4% and the
Kroneker delta §5. Thus, any spin-network state can be
sicpressed by means of a cerlain tensor expression formed
by s(2,07) tonsors, « and § objeces

s bas described in [33] a graphical notation for
tensor expressions of this kind. This notation is going
play a role in what follows, 50 we begin by secalling
its main (ngredbents. We indicate tweo-index tensors with
thick lines, with the Jadioes at the open euds of the line,
respecting the distinction betwenn upper indices, indi-
cated by lines p and lowsr indices, carrespond-
ing 1o l.m poicling down. More precisely. we ivdicate
of the parallel prapagatar U, of an fopen or

leml] curve o as a vertical bold line ac in

TS (36}

. (37

Finally, we indicate the sum over sepeated &

connesting the open ends of the lnes where the indices
are. We then have, for jnstance,

| [0

n S 3 i)

The mast interesting Telation is the idenity

an

e — a0 ® = BP0 [

X =R

which is of course relaved to the loon representation
upinor ideatity, Because of this last relation, in the Pen-
rose dingram of any loop state we can e the graphical

relation
BT

where the bar indicates symmetrization, on any [trae]
intereection o cverlapping Joop
a generic lmu]mpk] Loap slale in the

of

43}

torms, encl e,
w: a represact thise krncae . armaa of ha corsmapand:
al tensor dingram, which will zesult as a set of
cltncd Tinen. W ncopt. the aditioms] coovention of Ara

ing; lines that Form a rope as peashy parallel boes, sl
of srproducing the inbersections of the original loops as
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Thanks for the fabulous journey, my friend
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ThIS is non sensica} !
No theory predicjg this !

White
hole

Quantum
Transition

Black
hole
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