Title: Towards an information theory of scrambling

Speakers: Jinzhao Wang

Collection/Series: QIQG 2025

Subject: Quantum Gravity, Quantum Information

Date: June 24, 2025 - 2:30 PM

URL: https://pirsa.org/25060025

Abstract:

A scrambling unitary never destroys information according to quantum information/Shannon theory. However, this framework alone doesn't capture the fact that scrambled information can be effectively inaccessible. This limitation points to the need for a new kind of information theory—one that quantifies how much information is scrambled, rather than how much is lost to noise. To address this, we propose introducing a new family of entropies into physics: free entropy. Unlike conventional quantum entropies, which are extensive under tensor independence, free entropy has the defining feature of extensivity under freeness—the appropriate notion of independence pertaining to quantum scrambling.

I will present a preliminary result showing how free entropy naturally arises in a variant of Schumacher compression, providing it with an operational interpretation as the quantum minimum description length of quantum states. I will sketch how this interpretation extends to observables and unitaries, allowing free entropy to capture an operational aspect of quantum scrambling. Finally, I will highlight striking parallels between free entropy and von Neumann entropy, suggesting that free entropy may form the foundation of a new, complementary information theory.

Classical independence

$$\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$$

Pirsa: 25060025 Page 2/30

Classical independence

i.e.
$$\mathbb{E}(\tilde{X}\tilde{Y}) = 0$$
, $\tilde{X} := X - \mathbb{E}(X)$

Connected 2pt function

Quantum correlations in two ways

$$\varphi(\tilde{O}_A\tilde{O}_B) \neq 0$$
, $\tilde{O}_{A,B} := O_{A,B} - \varphi(O_{A,B})1$

- 1. $[O_A, O_B] = 0$, φ entangled (while observables separate in space)
- 2. $[O_A, O_B] \neq 0$, φ unentangled (while observables separate in time)

Pirsa: 25060025 Page 4/30

Two notions of independence

if
$$\forall O_A, O_B \text{ s.t. } [O_A, O_B] = 0$$
,

$$\varphi(\tilde{O}_A\tilde{O}_B)=0$$

(Tensor) Independence: $\varphi \cong \varphi_A \otimes \varphi_B$

when regions A and B are spatially distant.

Two notions of independence

Given O_A , O_B s.t. $[O_A, O_B] \neq 0$,

$$\varphi(\tilde{O}_A\tilde{O}_B\tilde{O}_A\tilde{O}_B\cdots) = 0$$
, etc , \forall words (O_A, O_B) .

Freeness: O_A and O_B are free w.r.t. ϕ

when O_A and $O_B = U_t O_A U_t^\dagger$ are temporally distant (and at large N).

[Voiculescu '91]

Intuitively,

Independence

Freeness

Spatially distant

VS

Scrambled in time

"Locality: what happens here doesn't influence something in a distance" "Butterfly effect: Knowing the past doesn't help you predict the future."

Tensor Independence — Freeness

-Quantum information theory --> ?

$$H(X)_p = \sum_{x} -p_x \log p_x$$

 $\rightarrow \rho_X$

commuting

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$

$$egin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \ x_{21} & x_{22} & \cdots & x_{2n} \ dots & dots & dots & dots \ x_{m1} & x_{m2} & \cdots & x_{mn} \end{bmatrix}$$

non-commuting

Another formula for Shannon entropy

$$H(X)_p = \sum_{x} -p_x \log p_x \qquad \text{``Gibbs''}$$
 Counting Measure Typical strings
$$H(X)_p = \lim_{\varepsilon \to 0} \lim_{N \to \infty} \frac{1}{N} \log \#\{x_N \in \mathcal{X}^N \mid |P_{x_N} - p| \le \varepsilon\}$$
 ``Boltzmann''

Entropy counts the number of typical strings => Compression

Pirsa: 25060025 Page 11/30

vN Entropy

"Gibbs" formula $p_X \to \rho_X$

Shannon Entropy

"Boltzmann" formula

?

Counting typical strings matrices

Pirsa: 25060025 Page 13/30

Matricial "microstates"

 x_N -

 $X_{N \times N}$

commuting

 $\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$

 $egin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \ x_{21} & x_{22} & \cdots & x_{2n} \ dots & dots & dots & dots \ x_{m1} & x_{m2} & \cdots & x_{mn} \end{bmatrix}$

non-commuting

Lebesgue measure
$$\text{N-by-N Hermitian matrix}$$

$$\chi(a) := \lim_{\varepsilon \to 0} \lim_{N \to \infty} \frac{1}{N^2} \log \Lambda \big\{ X = X^\dagger \in \mathbb{R}^{N^2} \, \big| \, \forall k, |\operatorname{tr}_N X^k - \tau(a^k)| \le \varepsilon \big\}$$

 $a=a^*\in(\mathcal{A},\tau)$

Free Entropy!

[Voiculescu '93]

*It was invented as a tool to study operator algebra.

Free Entropy also has two formulas:

$$\chi(a) := \lim_{\varepsilon \to 0} \lim_{N \to \infty} \frac{1}{N^2} \log \Lambda \left\{ X = X^\dagger \in \mathbb{R}^{N^2} \, \middle| \, \forall k, |\operatorname{tr}_N X^k - \tau(a^k)| \le \varepsilon \right\}$$

$$(a = a^*)$$
 "Boltzmann"

$$\chi(a) = \iint \log|x - y| \,\mathrm{d}\mu_a(x) \,\mathrm{d}\mu_a(y) + \mathrm{Const}$$
 "Gibbs" Spectral density of a

Pirsa: 25060025 Page 16/30

Does free entropy have an operational meaning? If so, it's gotta be compression of some sort in quantum theory.

Pirsa: 25060025 Page 17/30

Revisiting Schumacher compression

Task: Minimize |M| over $(\mathscr{E}, \mathscr{D})$.

Result: $|M| = nS(\rho) + O(\sqrt{n})$ [Schumacher '95]

Idea: Let's consider a variant of Schumacher compression.

Pirsa: 25060025 Page 19/30

Minimal quantum description

Unknown
$$\rho^{\otimes n} \xrightarrow{A} \mathscr{E} \xrightarrow{M} \mathscr{D} \xrightarrow{B} \tilde{\rho}^n \approx^{\varepsilon} \rho^{\otimes n}, \varepsilon = \text{negl}(n)$$

What's the minimal quantum description $M(\rho^{\otimes n})$ of some unknown $\rho^{\otimes n}$?

Pirsa: 25060025 Page 20/30

We show

Free entropy
$$|M(\rho^{\otimes n})| = \frac{1}{2} \chi_{\text{phy}}(\rho; 1/n) := \frac{1}{2} [d^2 \log n + \chi(\rho)] + \text{negl}(n)$$

$$= \frac{1}{2} (d^2 - \sum_i g_i^2) \log n + \sum_{i < j} g_i g_j \log |p_i - p_j| + \text{negl}(n)$$
Degeneracy Spectrum

[Hayden, Maloney, JW, Yang, wip]

Free entropy characterizes the Quantum Minimum Description Length (QMDL) of $\rho^{\otimes n}$, i.e. its descriptive complexity.

Pirsa: 25060025 Page 22/30

A Page curve of free entropy

Free Entropy of two variables

Free entropy is defined for any operators, such as unitary evolutions and Hermitian observables, not only density operators.

$$\chi(u,v) := \inf_{\varepsilon>0,\, m\in\mathbb{N}} \lim_{N\to\infty} \frac{1}{N^2} \log \, \gamma_{\mathrm{Haar}} \big\{ (U,V)\in U(N)^{\otimes 2} \, \Big| \, |\operatorname{tr} \left[P_m(U,V)\right] - \tau[P_m(u,v)] \, | \leq \varepsilon \big\}$$

$$u,v\in (\mathscr{A},\tau)$$

Free entropy is defined on the non-commutative distribution $\{\tau(P(u,v))\}_P$

 $\chi(u,v) \leq \chi(u) + \chi(v)$ (subadditivity), and it saturates for free $u,v \in (\mathcal{A},\tau)$.

Free entropy and Universal programming

We believe free entropy of unitaries measures the QMDL of their universal programs, which encode the unitaries into quantum states.

QMDL of U is determined by $\chi_{\rm phy}(U;\varepsilon)=d^2\log\varepsilon^{-1}+\chi(U)$

No programming theorem: $\varepsilon \to 0$, QMDL $\to \infty$

[wip]

[Nielson, Chuang '97]

Pirsa: 25060025 Page 25/30

Universal programming of (U, V)

QMDL of (U,V) is determined by $\chi_{\rm phy}(U,V;\varepsilon)=2d^2\log\varepsilon^{-1}+\chi(U,V)$ [wip]

 $\chi_{\rm phy}(U,V;\varepsilon) \leq \chi_{\rm phy}(U;\varepsilon) + \chi_{\rm phy}(V;\varepsilon)$ follows from concatenation.

Free mutual information

The subadditivity gap of QMDL is the free mutual information!

$$\lim_{\varepsilon \to 0} \left(\chi_{\text{phy}}(U; \varepsilon) - \chi_{\text{phy}}(U | V; \varepsilon) \right)$$

$$= \lim_{\varepsilon \to 0} \left(\chi(U) - \chi(U | V) \right) =: I_{\text{free}}(U : V)$$

 $I_{\mathrm{free}}(U:V)$ measures the gain in QMDL of U if we know how it relates to some V. Suppose $U=V(t), V=V(0), I_{\mathrm{free}}(U:V)$ quantifies how much knowing the past can help us describe the future, and hence a good probe of how scrambling the dynamics is. (cf. Shreya's talk)

Pirsa: 25060025 Page 27/30

Unscrambling Capacity

Given a unitary dynamics U_t , we can then use $I_{\rm free}$ to probe its scrambling. We conjecture that the following should be thought of as some kind of unscrambling capacity of U_t in a hypothetical communication task. [wip]

$$C(U_t) = \sup_{O} I_{\text{free}}(O: U_t O U_t^{\dagger})$$

More scrambling U_t is, smaller its unscrambling capacity.

*There is no good entropic measure in quantum Shannon theory that can do this job.

Pirsa: 25060025 Page 28/30

Laws of Information Theory

[Pippenger, '86]

 $H \ge 0$ (Positivity)

 $H(X) \le H(X, Y)$ (Monotonicity)

 $H(X, Y) \le H(X) + H(Y)$ (Subadditivity)

H(X, Y) = H(X) + H(Y) (X, Y Independent)

 $H(X, Y, Z) + H(Z) \le H(X, Z) + H(Y, Z)$ (Strong Subadditivity)

...

 $S \ge 0$ (Positivity)

 $S(A, B) \leq S(A) + S(B)$ (Subadditivity)

S(A,B) = S(A) + S(B) (A, B Independent)

 $S(A, B, C) + S(C) \le S(A, C) + S(B, C)$ (Strong Subadditivity) Intriguingly, It turns out that

 $\chi(a) \le \chi(a,b)$ (Monotonicity)

 $\chi(a,b) \le \chi(a) + \chi(b)$ (Subadditivity)

 $\chi(a,b) = \chi(a) + \chi(b)$ (a, b free)

 $\chi(a,b,c) + \chi(c) \le \chi(a,c) + \chi(b,c)$ (Strong Subadditivity [Jung, '03])

An information theory of scrambling?

Thank you!

Page 30/30