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Abstract:
A scrambling unitary never destroys information according to quantum information/Shannon theory. However, this framework
alone doesn’t capture the fact that scrambled information can be effectively inaccessible. This limitation points to the need for a
new kind of information theory—one that quantifies how much information is scrambled, rather than how much is lost to noise.
To address this, we propose introducing a new family of entropies into physics: free entropy. Unlike conventional quantum

entropies, which are extensive under tensor independence, free entropy has the defining feature of extensivity under
freeness—the appropriate notion of independence pertaining to quantum scrambling.

| will present a preliminary result showing how free entropy naturally arises in a variant of Schumacher compression, providing it
with an operational interpretation as the quantum minimum description length of quantum states. | will sketch how this
interpretation extends to observables and unitaries, allowing free entropy to capture an operational aspect of quantum
scrambling. Finally, | will highlight striking parallels between free entropy and von Neumann entropy, suggesting that free
entropy may form the foundation of a new, complementary information theory.
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Classical independence
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Classical independence
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Quantum correlations in two ways

§0(6A63) * 0, OA,B = Oy~ @Oy p)1

@ entangled (while observables separate in space)

2. [0y, Ogl # 0,

@ unentangled (while observables separate in time)
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Two notions ol iIndependence

if VO,,0ps.t.[04,04 =0,

CU(OAOB) =0
(Tensor) Independence: @ = @, ® @g

when regions A and B are spatially distant.
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Two notions ol iIndependence
Given 0y, 0p s.t. [0, 05] # 0,
0(0,050,05-+) =0, etc ,V words(O,, Op).

Freeness . 04 and Opg are free w.rt. @

when O,and Og = UtOAU;ore temporally distant (and at large N).

[Voiculescu "91]
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Intuitively,

Independence

Spatially distont

‘Locality: what happens
here doesnt influence
something in a distance’
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VS

Freeness

Scrambled in time

‘Buttertly effect: Knowing
the past doesn't help you
predict the future’



Fensertadependeree-  ——  Freeness

e e R Rt e i

irsa: 25060025 Page 8/30



HX),= ) —plogp,

Pirsa: 25060025



commuting 21 ] i T Ty wm_ non-commuting
€T 21 T22 Lan
Lin _wml Lm2 Lmn

Pirsa: 25060025 Page 10/30



Another formula for Shannon entropy

H(X), = Z — p,logp, “Gibbs”
X

Counting Measure

./
H(X), = lim lim Nlog #{xy € XV P, —pl <€)

e—=0 N—->oo

Typical strings

“Boltzmann”

Entropy counts the number of typical strings => Compression
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vN Entropy

“Gibbs” formula
/PX_” Px
Shannon Entropy
\ ?

“Boltzmann” formula
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Counting typicalstaas-
matrices
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Matricial microstates’

commuting 21 ] 11 T2 *°° Tin non-commuting
X9 L21 X222 7 T
J i Im1i  Tm2 wmn_
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Lebesgue measure
N-by-N Hermitian matrix

1 /
r(@) :=lim lim —log A{X = X' € RV

e—=0 N>

VE, | tryX* — 2(a¥) | < e}

a=a*e (A1)

Free Entropy |

[Voiculescu 93]

“It was Invented as a tool to study operator algebra.
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Free Entropy also has two formulas:

1
y(a) ;= lim lim ﬁlog A{X = X' € [RNz‘ Vk, | tryX* — 7(ah) | < 8}
e->0N—-0

— * " "
(a=a¥) Boltzmann

x(a) = Hlog |x — y|du,(x)dp,(y) + Const

\

Spectral density of a

“Gibbs”
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Does free entropy have an operational
meaning? I so, it's gotta be compression
ol some sort In quantum theory.



Revisiting Schumacher compression

A M B
[ p)®" < 7"y & | p)®"
R

|p>AR = Z '\/p_xll/fx)Alw.?)R

Task: Minimize | M| over (&, D).
Result: |M | = nS(p) + O(\/E) [Schumacher ‘95]
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[dea: Let's consider a variant of
Schumacher compression.
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Minimal quantum description

A M B
[p)®" < 17"y & | p)®"
R

2>

|P)ar = PelWoal ) L
A Z\/_ AR “’ Remove the purification R

A M B
Unknown p®% —— %—*@ —— " & p®" ¢ = negl(n)

What's the minimal quantum description M(p®™) of some unknown p®"?
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We show

Free entropy

l

1 1
| M(p®")| = = 2oy (3 11m) 2= —[dlog n + 1(p)] + negl(n)

I
= —(d*- ) gDlogn+ ) gglog|p,— p;| + negl(n)

S A

Degeneracy Spectrum

[Hayden, Maloney, JW, Yang, wip]
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Free entropy characterizes the Quantum

Minimum Description Length (QMDL) of p®"
Le. its descriptive complexity.
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A Page curve of {ree entropy

c 2l 2
Xphy(pa e“ld )
High descriptive complexity
- of radiation, i.e. a worst-
case lower bound on comp.
complexity.
[Harlow, Hayden "13]

tPage
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Free Entropy of two variables

Free entropy is defined for any operators, such as unitary evolutions
and Hermitian observables, not only density operators.

Monomial of degree m.

/

y,v):= inf lim %m Yiaarl (U, V) € U(N)®2| |t [P, (U, V)] = [P, (u,v)]| <&}

e>0,meN N—oo

u,v € («,7)

Free entropy is defined on the non-commutative distribution {7(P(u, v)) | p

y(u,v) < y(u) + y(v) (subadditivity). and it saturates for free u, v € (<, 1) .
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Free entropy and Universal programming

We believe free entropy of unitaries measures the QMDL of their universal

programs, which encode the unitaries into quantum states.

Yo ol

QMDL of U is determined by thy(U - €) = d? log el + y(U)

No programming theorem: € = 0, QMDL — oo
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%

U

[wip]

[Nielson, Chuang '97]
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Universal programming of (U, V)

S I U
. @ SR .

Yu.v

&

QMDL of (U, V) is determined by y, (U, Vs €) = 2d*loge™" + (U, V)

[wip]
Yony(Us Vi €) < xony(Us ) + yny(V; €) follows from concatenation
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Free mutual information

The subadditivity gap of QMDL 1s the {ree mutual iInformation!

lir% ()(phy(U ) €) — ;(phy(U | V; €) )

- ll_l;% (X(U) —x(U1|V) ) = Igee(U 1 V)

I;..(U : V) measures the gain in QMDL of U if we know how it relates

to some V. Suppose U = V(¢), V = V(0), L. (U : V) quantifies how
much knowing the past can help us describe the future, and hence a
good probe of how scrambling the dynamics is. (cf. Shreya’s talk)
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Unscrambling Capacity

Given a unitary dynamics U, we can then use I, to probe its
scrambpling. We conjecture that the following should be thought

of as some kind of unscrambling capacity of U, in a hypothetical
communication task.

C(U) = sup I..(O : UtOUtT)
0

[(wip]

More scrambling U, is, smaller its unscrambling capacity.

*There 1s no good entropic measure in
quantum Shannon theory that can do this job.
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Laws of Information Theory Pippenger 86|

H > 0 (Positivity)

H(X) <H(X,Y) (Monotonicity)

H(X,Y) < HX)+ H(Y) (Subadditivity)
H(X,Y)=H(X)+ H(Y) (X, YIndependent)
HX,Y,Z)+ HZ)<HX,Z)+ H(Y,Z)

Intriguingly, It turns out that

y(a) < y(a,b) (Monotonicity)
y(a, b) < y(a) + y(b) (Subadditivity)

(Strong Subadditivity) Z(as b) = )((a) a5 )((b) (a, b free)
o y(a,b,c)+ y(c) L y(a,c) + y(b,c)
S > 0 (Positivity) (Strong Subadditivity [Jung, ‘03])

S(A,B) < S(A) + S(B) (Subadditivity)

S(A,B) = S(A) + S(B) (A, B Independent) An information theory

S(A,B,C) + 5(C) £ 5(A,C) + 8(B, C) of scrambling?
(Strong Subadditivity)
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Thank you!

— R
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