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Abstract:

A key question in holography is how to reconstruct bulk operators in the holographic dual. It is especially interesting to
reconstruct operators inside the black hole interior, but also especially difficult to do explicitly. Recently, an explicit form for the
bulk-to-boundary “holographic’ map was proposed in JT gravity, by lliesiu, Levine, Lin, Maxfield, and Mezei, who also proposed
and studied an explicit "reconstruction’ map on operators. In this talk, | will discuss various pros and cons of their reconstruction
map, and propose an alternative map with perhaps nicer properties.
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Introduction to reconstruction

® Consider semiclassical gravity (SCG), defined as quantum field theory on
a curved background, coupled to the metric in a perturbative Gy
expansion.
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Introduction to reconstruction

® Consider semiclassical gravity (SCG), defined as quantum field theory on
a curved background, coupled to the metric in a perturbative G
expansion.

® This is an effective theory for quantum gravity.

® As an effective theory, its predictions cannot always be trusted.
Sometimes they receive large corrections from e~ 1/&~ effects.

e AdS/CFT offers a path towards computing these effects: given an
operator in AdS SCG, we reconstruct it in the CFT and evaluate it there.

® Doing this with the necessary precision is not yet possible in general. We
don't understand enough about these reconstruction maps.

® | ast year, a precise reconstruction map was proposed in
Jackiw-Teitelboim (JT) Eravity. [iliesu Levine-Lin Maxfield-Mezei '24]

® | will explain this reconstruction map, some pros and cons, and a way we
can modify it to remove some of the cons.
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Jackiw-Teitelboim gravity

- JT gra\”ty [Teitelboim '83, Jackiw '85]

Sy o~ SO/d2$\/gR+/d2$\/g<I>(R+2)

® Consider Sy — oc, called JT... All solutions look like a wormhole. The
only degree of freedom is its length. (Hariow-Jafreris 2018]
® [N [Harow Jafreris 2018), It wWas demonstrated that the quantized theory is

described by
[ g
H() = LQ(R) . H[] = —§8f + Do

where x is the wormhole length.

® A typical solution has (&) shrink for a while, then grow forever.
® This is analogous to “semiclassical gravity”, Gy — 0. Note the

continuous energy spectrum. /
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JT gravity at S) < oo

JT gravity:

Syt ~ Sy /dQ;c\/_—gR + /dgm\/_—gtl)(R +2)

At finite Sy, the topology can fluctuate. Computing with the
gravitational path integral, e.g.

= -,_.../,

This theory has a known dual description as a random matrix model

[Saad-Shenker-Stanford "19]

Each matrix is a Hamiltonian on Hilbert space H, with a discrete
spectrum
{F1, Es, ...}

typically with AE ~ O(e~9°) and leading order density of states

po(E) ~ € sinh (\/E) :
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JT+ as an effective theory

® Consider a single draw from the ensemble,
{F1, Es, ...}

® We will follow fiiesu-Levine-Lin-Maxfield-mezei 241 and consider JT o, as an effective
description of that fundamental theory.

® Good analogy for higher dimensions: Sy — oo is like Gy — 0. SCG has
continuous spectrum black holes, while QG discrete.

® Now we can ask how predictions of JT' ., are corrected in the
fundamental theory.

® For example, JT, predicts wormhole length grows linearly forever:

® We'd like to ask: in the fundamental theory, what length x.,.(t) do we
expect as a fun of time?
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Case study: length operator

® We expect z,ue(t) = z(t) for a while. A short experiment can’t resolve

the energy differences.

® However, we know eternal growth can't happen in the fundamental
theory at finite energy, because of the discrete spectrum. [susskind ‘14,

lliesu-Mezei-Sarosi '22, Stanford-Yang '22, }

Tirue

ey prrni e
LY )

O(e™) t

® |t's one thing to know JT + is wrong at late times. It's a harder thing to

compute the corrections!
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Case study: length operator

® We expect zue(t) = z(t) for a while. A short experiment can’t resolve
the energy differences.

® However, we know eternal growth can't happen in the fundamental
theory at finite energy, because of the discrete spectrum. [susskind 14,

lliesu-Mezei-Sarosi '22, Stanford-Yang '22, }

Tirue

b ot e
A, =y

O(e™) t

® |t's one thing to know JT + is wrong at late times. It's a harder thing to
compute the corrections!

® Problem: what even is Zipye?
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Reconstructing operators: a previous proposal

e Recently, there haS been a pI’OpOSEl| fOI’ :%true [HNiesu-Levine-Lin-Maxfield-Mezei '24].
® The starting point is the “holographic map”

I/':'}{U —H

which is deduced from studying O(e~°°) corrections to the inner-product.

@
) = @
°
(|z')o = ' = §(z — )
°

&G
(la"y =& TS + 4 + . = Oy +0(e™°)
SRS
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Reconstructing operators: a previous proposal

e Recently, there haS been d pI’OpOSEl| fOI’ :%true [HNiesu-Levine-Lin-Maxfield-Mezei '24].
® The starting point is the “holographic map”

I/':'}{U —H

which is deduced from studying O(e~°) corrections to the inner-product.

@
) = @
°
(|z')o = ' = §(z — )
°

5S-G
(la"y =& TS + 4 N0 AR (et
SRS

® They define a linear map V' : Hg — H such that
(z|z') = (z[VTV]a'),
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The holographic map, continued
® This V acts diagonally in the energy eigenbasis:
Vieh =V [ dBo(BYos (@) 1E),
= e /23 " ¢p, (z) | En)
=tlan)

® There is another way to motivate this V. It is the map that commutes
with time evolution:
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Reconstruction map

® So far, we have a map on states
Ve Tie
® This induces a pullback on operators,
V*:B(H) — B(Ho)

W|VTOV )y = (W|V*(O) 1),

® VV does not automatically define a reconstruction map
R* : B(Hy) — B(H) .
b4 They [lliesu-Levine-Lin-Maxfield-Mezei '24] COI‘]SIdeI’ed the r’eCOI‘lStI’UCtIOﬂ map

R*(Og) :=VO,VT.
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Nice features of their reconstruction map

® This reconstruction map
R*(Og) :=VOuVT .

has some good properties and some strange ones.
® |t's very natural, given some V : Hy — H.
e |f V is an isometry, then R* inverts V* in a natural way:

V*o R*(Op) =VIVO VTV =0y .

® As shown by (iiesuLevine Lin-maxiicid-mezei 241, this defines some reconstructions with
behavior we like:

I e

No=200,E=3

N

SNy =300, E =3

il | =—disk, =3
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Perhaps undesirable features

® One peculiar feature of this R* is that it does not reconstruct simple
operators in a nice way, for example

R*(1p) #1..
® To see this,
o= [ dafayaly = B(to)= [ dolo)al
but then -
(z|R*(10)|z) = / d'| (e]z’) [2 = oo .

® Similarly, R*(x) is ill defined.

® The authOFS [lliesu-Levine-Lin-Maxfield-Mezei '24] kneW th|S, and pI’OpOSE that we ShOUld
simply focus on the operators with better reconstructions.
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Our proposal

® Those features of R* are perhaps undesirable because we would like JT
to be a good effective description for certain “semiclassical” states and
operators, in the sense

}?*(()o)LI|¢OO Rﬁl/()o‘ﬁﬁo

® We propose that we should look for a reconstruction map R* that
satisfies this.

® Specifically, we will demand it satisfies this to as good an approximation
as possible for short times.

® Does such a map exist that also retains the nice features (natural,
behavior we like,...)?

® Yes: we will construct such a reconstruction map!
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Making our proposal more precise

® \We look for an R* satisfying to best approximation
R*(O0)V [}y = VOq 9,
® |V commuted with time evolution, so
REE ) =N

® This does not yet fully specify R*. To further constrain, we would like to
decide how it acts on the conjugate to Hy

BRI

® This ¢ satisfies
e’iH[Jtéef’iH()t — 6+t

Technically this J is not a well-defined self adjoint operator, but we can
be more rigorous by working with action-angle operators instead.
Qualitatively unchanged.
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Reconstructing o

® \We want to decide what operator should be R*(J).

® Qur guiding proposal instructs us to minimize the error on semiclassical

States,
R*()V i)y = Vi |¥),

® For definiteness, I'll take “semiclassical states” to be the microcanonical
Hartle-Hawking state and short time evolutions of it.

® We can do this for each energy window separately, which largely fixes
R*(9).
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Reconstructing other operators

e With R*(Hy) and R*(9), we can define the reconstruction of a general

operator
A(Hy,d) — A(R*(Hy), R*(5))

® Applying this to the length operator z, we can evaluate (R*(z)(t)) and
find interesting physics,

P(x)
t=1. ty(Emi
o H( mln) (x(l))
t= 075 tH(Emm) 1000_ p
0.03 — =05 4Em) gt
— t= 0.2 ty(Epmin) [/
0.02 i 7
— t=0.1 t4(Emin) i
400}
. ‘.‘ — t= 0. ty(Epmin) f
W\ 200}/
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Summary

® Starting with V', we designed an * based on the principle that
semiclassical gravity is as valid as possible at short times.

® With this, we could write down explicit reconstructions, such as R*(x),
and evaluate explicitly, finding novel behavior as a function of time.

p(x)
t= 1. ty(E g
0.04 #(Enin) (x(1)
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