Title: Visions of RealTime: The Lorentz-signature gravitational path integral for fun and profit (Vision Talk)

Speakers: Donald Marolf

Collection/Series: QIQG 2025

Subject: Quantum Gravity, Quantum Information

Date: June 24, 2025 - 4:00 PM

URL: https://pirsa.org/25060013

Abstract:

The Euclidean gravitational action is unbounded below. As a result, even at the effective field theory level, the gravitational path integral cannot be formulated as an integral over real Euclidean geometries. I therefore review recent efforts to formulate the path integral directly in Lorentz-signature in a manner that allows general topology-changing transitions. I will also describe how this formulation resolves certain puzzles associated with computing the density of states for nearly-extremal black holes.

(VIRTUAL TALK)

Pirsa: 25060013 Page 1/24

Visions of RealTime:

The Lorentz-signature gravitational path integral for fun and profit

Don Marolf

UCSB

6/24/25

◆ロ → ◆昼 ► ◆ 基 → ◆ 基 ・ 夕 Q ②

Don Marolf (UCSB)

Visions of RealTime:

6/24/25

Recent results from Euclidean gravitational path integrals:

- Page curve from replica wormholes
- Schwarzian-mode contributions to near-extreme BH density of states
- Phases in dS partition functions?

Image credits: G. Pennington, T. Mertens & J. Turiaci, mathcurve.com

GPI an Oracle?

Oracles are known for being dangerously enigmatic! We wish to be Themistocles* and not Croesus[†]!!

*Who saved Athens by realizing Oracle's advice to build "wooden walls" meant to build the navy that defeated the Persians at Salamis.

† Who was told that, by attacking Persia, he would destroy a great empire

- and who thus destroyed his own.

(□) (□) (□) (□) (□)

Don Marolf (UCSB)

Visions of RealTime:

6/24/25

Real Euclidean metrics can have arbitrarily negative S_E .

Recall: spheres have negative action.

$$S_E(S^d) < 0.$$

(For $\Lambda > 0$, this requires $r < \sqrt{\frac{d(d-1)}{2\Lambda}}$).

But real Euclidean metrics can have arbitrarily negative S_E .

With many spheres, S_E is very negative.

$$S_E(S^d \sqcup S^d \sqcup \cdots \sqcup S^d) = nS_E(S^d) < 0.$$

If we join neighboring spheres using necks of size ϵ , the contribution to $\int \sqrt{g} R$ scales like ϵ^{d-2} . This vanishes at small ϵ for d>2.

Chains of n spheres with small necks have large negative action at large n.

$$S_E \sim nS(S^d) \rightarrow -\infty.$$

Curvatures need not be large!

A problem at the EFT level. Does not appear to be UV sensitive. [Problem remains when grav. constraints are imposed. arxiv:2505.13600 w/ Horowitz & Santos. And also on-shell for "necklaces" from Jonah's talk?]

Don Marolf (UCSB)

Visions of RealTime:

6/24/25

Prevailing Wisdom: Choose a different contour

But which one?

Cartoon example: Red shows large e^{-S_E} .

Euclidean metrics are positive real axis since signature $+ + \cdots +$.

Lavender curve is a branch cut.

Dot is a saddle w/ descent/ascent curves in blue/red.

Two possible choices of convergent contour.

Don Marolf (UCSB)

Visions of RealTime:

6/24/25

Prevailing Wisdom: Choose a different contour

But which one?

Cartoon example: Red shows large e^{-S_E} .

Euclidean metrics are positive real axis since signature $+ + \cdots +$.

Lavender curve is a branch cut.

Dot is a saddle w/ descent/ascent curves in blue/red.

Two possible choices of convergent contour.

Green contour follows descent contour over saddle

Saddle contributes!

Prevailing Wisdom: Choose a different contour

But which one?

Cartoon example: Red shows large e^{-S_E} .

Euclidean metrics are positive real axis since signature $+ + \cdots +$.

Lavender curve is a branch cut.

Dot is a saddle w/ descent/ascent curves in blue/red.

Two possible choices of convergent contour.

Silver contour runs downhill away from saddle

Saddle contribution would exceed integrand anywhere along contour! So saddle cannot contribute!

Don Marolf (UCSB)

Visions of RealTime:

5/24/25

Some Options

Gibbons-Hawking-Perry: Wick rotate the conformal factor!

- Gives physically sensible results for perturbations around real black hole saddles.
- Less clear what it means around complex saddles.
- Originally defined for asympt flat metrics $g = \Omega^2 \tilde{g}$ with $\tilde{R} = 0$.
- Deemed to fail since not every asympt flat metric is of this form.

Old Alternative Proposal (many authors):

Define path integral using the real *Lorentz*-signature contour! (Integrand e^{iS} oscillates, but that's better than diverging.)

Don Marolf (UCSB)

Visions of RealTime:

6/24/25

Topology change in the Lorentzian path integral: Some Initial References

- J. Louko & R. Sorkin, *Complex actions in two-dimensional topology change*, [arXiv:gr-qc/9511023.
- 2 Y. Neiman, The imaginary part of the gravity action and black hole entropy, arXiv:1301.7041.
- 3 X. Dong, A. Lewkowycz and M. Rangamani, *Deriving covariant holographic entanglement*, arXiv:1607.07506.
- 4 D. Marolf and H. Maxfield, Observations of Hawking radiation: the Page curve and baby universes, arXiv:2010.06602.
- 5 S. Colin-Ellerin, X. Dong, D. Marolf, M. Rangamani and Z. Wang, Real-time gravitational replicas: Formalism and a variational principle, arXiv:2012.00828.
- S. Colin-Ellerin, X. Dong, D. Marolf, M. Rangamani and Z. Wang, Real-time gravitational replicas: low dimensional examples, arXiv:2105.07002.
- **1** D. Marolf, Gravitational thermodynamics without the conformal factor problem: partition functions and Euclidean saddles from Lorentzian path integrals, arXiv:2203.07421.
- B. Dittrich, T. Jacobson and J. Padua-Argüelles, de Sitter horizon entropy from a simplicial Lorentzian path integral, arXiv:2403.02119.

9/27

Don Marolf (UCSB) Visions of RealTime: 6/24/25

Example of method: BH partition functions from Lorentzian Path Integrals [arxiv:2203.07421]

Strategy: For an operator $H \geq E_0$, we can write

$$e^{-eta H} = \int_{\mathbb{R}} dT e^{-iHT} f_{eta}(T)$$

where $f_{\beta}(T) = \frac{1}{2\pi i} \frac{e^{E_0(-\beta+iT)}}{T+i\beta}$.

We therefore write

$$Z = \text{Tr}e^{-eta H} = \int_{\mathbb{R}} dT \left(\text{Tr}e^{-iHT} \right) f_{eta}(T).$$

We then interpret the right-hand side as an integral over Lorentzian path integrals with periodic Lorentz-signature time of period T.

Of course, Tre^{-iHT} is ill-defined.

However, the right-hand-side should make sense if the integral over T is performed before the trace is fully evaluated.

Don Marolf (UCSB)

Visions of RealTime:

6/24/25

BH partition functions from Lorentzian Path Integrals

$$Z = \operatorname{Tr} e^{-\beta H} = \int_{\mathbb{R}} dT \left(\operatorname{Tr} e^{-iHT} \right) f_{\beta}(T) \quad \text{for} \quad \operatorname{Tr} e^{-iHT_{\beta}} = \int_{\substack{\text{Lorentzian}^* \\ \text{spacetimes} \\ \text{with period} T}} \mathcal{D} g \ e^{iS}.$$

We will integrate over BCS!

*: We wish to allow general toplogies.

⇒ Allow spacetimes with codim-2 Lorentzian conical singularities where Lorentz structure breaks down; e.g., time-periodic quotients of BH exteriors.

Identifying Σ_+ with Σ_- creates a spacetime with a conical singularity at γ . Note that no null geodesics reach γ ; i.e., it has no light cone $(\mathcal{N}=0)$ instead of the usual $\mathcal{N}=4$).

$$S_{EH} = \frac{1}{16\pi G_N} \int_{\tilde{\mathcal{M}}} \sqrt{-g} R \quad \text{Louko \& Sorkin arxiv} : \text{gr} - \text{qc}/9511023$$

$$:= \lim_{\epsilon \to 0} \left(\frac{1}{16\pi G_N} \int_{\tilde{\mathcal{M}} \setminus \mathcal{U}_{\epsilon}} \sqrt{-g} R - \frac{1}{8\pi G_N} \mathcal{P} \int_{\partial \mathcal{U}_{\epsilon}} \sqrt{|h|} K \right) + i \left(\frac{\mathcal{N}}{4} - 1 \right) \frac{A\gamma}{4G_N}$$

$$S_{Total} = -ET + \Omega \mathcal{F} - iA_{\gamma}/4G_N \quad \text{since } \Omega = 0 \text{ for our problem.}$$

Don Marolf (UCSB)

Visions of RealTime:

6/24/25

Save A, T integrals for last

Evaluate others integrals semiclassically.

Saddles are quotients $\mathcal{M}_{A,T}$ of static black holes with area $A_{\gamma} = A$ under a time translation with T.

$$Z \approx \int_{\mathbb{R}^{+}} dA \int_{\mathbb{R}} dT \ f_{\beta}(T) e^{iS(\mathcal{M}_{A,T})} = \int dA dT \ f_{\beta}(T) e^{A/4G} e^{-iET}$$

$$= \int dA dT \ \frac{1}{2\pi i} \frac{e^{E_{0}(-\beta+iT)}}{T+i\beta} e^{A/4G} e^{-iET}$$

$$= \int dA \ e^{A/4G} e^{-\beta E}.$$

$$= \int dA \ e^{A/4G} e^{-\beta E}.$$

$$\Rightarrow A : A(E)$$

So the density of states is A/4G as desired.

4□ ト 4回 ト 4 三 ト 4 三 り 9 ○ ○

Don Marolf (UCSB) Visions of RealTime:

6/24/25

Save A, T integrals for last

Evaluate others integrals semiclassically.

Saddles are quotients $\mathcal{M}_{A,T}$ of static black holes with area $A_{\gamma} = A$ under a time translation with T.

$$Z \approx \int_{\mathbb{R}^{+}} dA \int_{\mathbb{R}} dT \ f_{\beta}(T) e^{iS(\mathcal{M}_{A,T})} = \int dA dT \ f_{\beta}(T) e^{A/4G} e^{-iET}$$

$$= \int dA dT \ \frac{1}{2\pi i} \frac{e^{E_{0}(-\beta+iT)}}{T+i\beta} e^{A/4G} e^{-iET}$$

$$= \int dA \ e^{A/4G} e^{-\beta E}.$$

So the density of states is A/4G as desired.

Generalizations

- Double cones w/ higher topology 2411.16922 by Blommaert et al
- Charged (and rotating) singularities 2501.08409 by Hong Zhe [Vincent] Chen

$$Z pprox \int dA \, dQ \, e^{A/4G} e^{-\beta(E+\mu Q)}.$$

Don Marolf (UCSB)

Visions of RealTime:

6/24/25

Application: Near-extremal density of states

w/ Maciej Kolanowski

Puzzle raised by L. Iliesiu and J. Turiaci, arxiv:2003.02860 (non-SUSY)

Studied density of states by using partition function for JT gravity w/ Maxwell field.

Compact U(1) gauge group, so $\mu_n = \mu + \frac{2\pi ni}{\beta}$ gives same holonomy $e^{-q\int_{S^1}A} = e^{-q\beta\mu_n}$ around Eucliean time circle for all $q,n\in\mathbb{Z}$.

 \implies Sum over these 'shifted' μ_n in the path integral. (Complex BCS!)

Sum converges in Maxwell-JT!

Application: Near-extremal density of states

w/ Maciej Kolanowski

Puzzle raised by L. Iliesiu and J. Turiaci, arxiv:2003.02860 (non-SUSY)

Studied density of states by using partition function for JT gravity w/ Maxwell field.

Compact U(1) gauge group, so $\mu_n = \mu + \frac{2\pi ni}{\beta}$ gives same holonomy $e^{-q\int_{S^1}A} = e^{-q\beta\mu_n}$ around Eucliean time circle for all $q, n \in \mathbb{Z}$.

 \implies Sum over these 'shifted' μ_n in the path integral. (Complex BCS!)

Sum converges in Maxwell-JT!

But corresponding sum diverges for a (large) AdS-RN black hole! (unpublished)

(Even though JT should be a dim reduction of (nearly-extreme) Einstein-Maxwell.)

Don Marolf (UCSB)

Visions of RealTime:

6/24/25

Resolution

Note: Iliesiu and Turiaci emphasized one-loop contributions, but puzzle arises already at leading semiclassical level. So let us just focus on the saddles.

The Lorentzian prescription gives a well-defined starting point.

(*)
$$Z \approx Z_{TAdS} + \sum_{n} \int dA \, dQ \, e^{A/4G} e^{-\beta(E + [\mu + \frac{2\pi ni}{\beta}]Q)}$$
 [Chen 2501.08409]

Since the path integral sums over topologies, I have included a separate contribution Z_{TAdS} from thermal AdS.

We could also just take (*) as our starting point on physical grounds.

Don Marolf (UCSB) Visions of RealTime:

6/24/25

Details:

We wish to study the partition function

$$Z \approx Z_{TAdS} + \sum_n Z_n, \text{ with } Z_n := \int dA \, dQ \, e^{A/4G} e^{-\beta(E + [\mu + \frac{2\pi ni}{\beta}]Q)} = \int dA \, dQ \, e^{-S_E},$$

where (say, in AdS_4) for n = 0 we have

$$-S_E = \frac{A}{4G} - \beta(E + \mu Q) = \left(\frac{1}{2}\beta - \frac{r_+^3}{L^2} - \frac{Q^2}{r_+} + 2\mu Q - r_+\right) + \pi r_+^2,$$

and $r_{+} := \sqrt{A/4\pi} \ge 0$.

Above, $Z_{TAdS} = 1$ is a thermal AdS contribution with A = 0, Q = 0, E = 0.

Since $r_+ \geq 0$, the Q-integral is a convergent Gaussian for all $\mu \in \mathbb{C}$.

Since taking $n \neq 0$ just inserts a phase, we must have $|Z_n| < Z_0$.

Don Marolf (UCSB)

Visions of RealTime:

6/24/25

The r_+ integral

Performing the Gaussian Q integral gives

$$Z_0 = \frac{8\sqrt{2}\pi^{3/2}}{\sqrt{\beta}} \int_0^\infty dr_+ r_+^{3/2} e^{\frac{1}{2}r_+ \left(\beta \left(\mu^2 - \frac{r_+^2}{L^2} - 1\right) + 2\pi r_+\right)} = \frac{8\sqrt{2}\pi^{3/2}}{\sqrt{\beta}} \int_0^\infty dr_+ r_+^{3/2} e^{-S_E},$$

and similarly for Z_n .

Saddles for n = 0 are large and small AdS-RN BHs with

$$r_{+} = \frac{L}{3\beta} \left(2L\pi \pm \sqrt{4L^{2}\pi^{2} + 3\beta^{2}(\mu^{2} - 1)} \right).$$

Results for $n \neq 0$ are obtained by replacing $\mu \to \mu + \frac{2\pi ni}{\beta}$.

For large n > 0 the saddles satisfy

$$r_{+} = \pm rac{2\pi niL}{\sqrt{3}eta} + rac{L\left(2L \pm \sqrt{3}eta\mu
ight)}{3eta} + O(n^{-1}),$$
 $S_{E} = \pm rac{8i\pi^{3}Ln^{3}}{3\sqrt{3}eta^{2}} + rac{4n^{2}\pi^{2}L\left(\pi L \pm \sqrt{3}eta\mu
ight)}{3eta^{2}} + O(n).$

For $\sqrt{3}\beta\mu > \pi L$, the saddle with least $\mathrm{Re}S_E$ has $\mathrm{Re}S_E \propto -n^2$ and gives a divergent sum!

But this (-) saddle cannot actually contribute, as it would give $|Z_n| > Z_0$.

Recall:
$$Z_n := \int dA \, dQ \, e^{A/4G} e^{-\beta(E + [\mu + \frac{2\pi ni}{\beta}]Q)} = \frac{8\sqrt{2}\pi^{3/2}}{\sqrt{\beta}} \int_0^\infty dr_+ r_+^{3/2} e^{-S_E}.$$

with

$$S_E = -\frac{1}{2}r_+\left(\beta\left(\left[\mu + \frac{2\pi ni}{\beta}\right]^2 - \frac{r_+^2}{L^2} - 1\right) + 2\pi r_+\right).$$

Also note: For $\mu, \beta > 0$ the RHS integrand has has $\operatorname{Im} S_E < 0$.

But the (+) $\text{Im}S_E < 0$ saddle has $\text{Im}S_E > 0$. So it cannot contribute either. Thus for fixed β, μ , only thermal AdS contributes at large |n|.

Don Marolf (UCSB)

Visions of RealTime:

6/24/25

$$|e^{-S_E(r_+)}|$$
 for $n=3, \beta=1$, $Z_3 \propto \int_0^\infty dr_+ r_+^{3/2} e^{-S_E}$.

Don Marolf (UCSB)

Visions of RealTime:

6/24/25

22 / 27

Pirsa: 25060013

◆□▶◆部≯◆意≯◆意≯・意 200

Don Marolf (UCSB)

Visions of RealTime:

6/24/25

25 / 27

Page 22/24

Pirsa: 25060013

Summary

Don Marolf (UCSB)

- The gravitational path integral has taught us a lot. But a full definition requires a choice of contour.
- Proposal: Use the real Lorentzian contour with singularities that allow topology change and the Louko-Sorkin prescription for the associated (complex!) action.
- Reproduces standard Euclidean calculations of BH thermodynamics with real potentials.
- Gives sensible results for sums over shifted complex potentials associated with compact gauge groups and charge quantization.
- An especially useful tool when saddles are far from the real axis and physical intuition from real black holes is not obviously reliable.

◆ロト→□ト→豆ト→豆 りへで

Pirsa: 25060013

Further comments:

- Reproduces Euclidean computations of gravitational Reyni's. Colin-Ellerin et al, arxiv:2012.00828,2105.07002 J. Held, X. Liu, DM, Z. Wang arxiv:2409.17428
- Excludes AdS axion wormholes, despite previous Euclidean analyses finding them to be "stable" in the asymptotically flat context. [to appear w/ J. Held, M. Kaplan, and Z. Wang]
- Nevertheless, appears to allow Garcia-Garcia-Godet wormholes (JT + imaginary scalar) and Marolf-Santos wormholes.
- Much more to do! E.g., Vincent and Maciej are looking at one-loop effects. near extremality in this framework.
- Better understanding of story with higher derivative terms?

Maciej Kolanowski, Hong Zhe [Vincent] Chen, Zhencheng Wang,

Xiaoyi Liu

200

Visions of RealTime: