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Abstract:

A diffeomorphism-invariant definition of physical subsystems is crucial for understanding local quantum information in gravity.
Recent toy models have made progress by adding observers with clocks and imposing boost invariance, thereby enabling a
rigorous von Neumann algebraic definition of generalized entropy. But they depend on auxiliary degrees of freedom and leave
infinitely many diffeomorphisms unaddressed. It is natural to ask what happens when one tries to surmount these limitations.

I'll show that including null translations lets us prove a version of the generalized second law beyond the semiclassical regime,
with potential direct implications for black hole information. Then I'll outline how the area degrees of freedom on a null surface
define a quantum null time coordinate, and show how to use it to construct dressed operators invariant under all null
diffeomorphisms (work in progress with Laurent Freidel.)
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Area and Time

Josh Kirklin

QIQG 2025

[Based on: 2405.00114 & 2412.15502 with Julian De Vuyst, Stefan Eccles & Philipp Hoéhn;
2412.01903;

-

PERIMETER
INSTITUTE
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QRFs (quantum reference frames) are key to understanding QI in QG.

E.g. boost clocks regularise entropy (via crossed product).
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QRFs (quantum reference frames) are key to understanding QI in QG.

E.g. boost clocks regularise entropy (via crossed product). But:
Only one diffeomorphism Rpoost C Diff (M) accounted for? What about the others?

Boost clock is typically auzxiliary. Can we use an intrinsic QRF?
This talk: how to surmount these limitations — and what we stand to gain.

Generalised second law beyond the semiclassical regime.
Two diffeomorphisms Aff(R) C Diff (M) are accounted for, using dynamical cuts.
Leads to a modification: Sgen(v2) > Sgen(v1) + free energy of QRF.

The area element on a null surface as a QRF.
Completely intrinsic to the gravitational system.

Accounts for Diff(R) C Diff(M). Rich mathematical and physical structure.
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General Covariance

-

Reference Frames

(coordinate systems)
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Background Independence General Covariance

~ —~

Dynamical Reference Frames

“clocks and rods”
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Background Independence General Covariance

~~ —~

Quantum Reference Frames (QRFs)

‘\ “quantum clocks and rods”

Quantum Theory
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Quantum clocks regulate entropies.

[Chandrasekaran, Longo, Penington, Witten, Jensen, Sorce, Speranza, ...]

[De Vuyst, Eccles, Hohn, JK, 2405.00114 & 2412.15502]

Let Ay C B(Hqgrr) be the algebra of
field operators with support in some
subregion U.

(AZ/[ X B(Hclock))c = Az/[ X R
N s
‘crossed product’

C = HQFT el Hclocka %clock — LZ(R)

Fields are thermal in /. Choose a clock that measures the associated time.
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Quantum clocks regulate entropies.

[Chandrasekaran, Longo, Penington, Witten, Jensen, Sorce, Speranza, ...]

[De Vuyst, Eccles, Hohn, JK, 2405.00114 & 2412.15502]

Let Ay C B(Hqgrr) be the algebra of
field operators with support in some
subregion U.

(AZ/I & B(Hclock))c = Az/[ X R
N s
‘crossed product’

= HQFT iR Hclocka %clock — L2(R)

Fields are thermal in ¢/. Choose a clock that measures the associated time.
Entropy of fields is UV-divergent: S(Ay) = o
But entropy of fields and clock is finite! S(Ay ¥ R) < 00
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Semiclassically, S( A, x R) is generalised entropy.

‘Semiclassically’ means small ¢ fluctuations, i.e. small (A#)? = ((f — (£))?).

Alternatively: large Hoa fluctuations. More precisely:
A];Iclock > AHQFT

In this regime one finds: relative entropy

\/ some constant f vacuum
S(-AU A R) = S0 — (Hclock> _ SSET(IPHQ) T s
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Semiclassically, S(A; x R) is generalised entropy.

‘Semiclassically’ means small ¢ fluctuations, i.e. small (A#)? = ((f — (£))?).

Alternatively: large Hoq fluctuations. More precisely:

A];Iclock > AHQFT

In this regime one finds: relative entropy

\/ some constant \/ vacuum
S(-AU A R) = S0 — (Hclock> _ SS%‘T(IPHQ) T s

Introducing a UV regulator, and using Einstein’s equations
G, = 8nGnT,, (withT,, =Te® +T5>*) leads to:

(Area(0U))

S(Au 2 R) = =

+ Sqrr(U) + -+ = Sgen !
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Consider a Killing horizon 7.

The fields outside a given cut are thermal
with respect to a boost.

The constraint generating the boost
comes from Raychaudhuri’s equation.

Area(o0)

C:Koos e
\lﬁg . 4GN .

Hqpr ~~
Hclock

Kboost :/ UTvv-
A

Semiclassical regime AH ok > AHgpr is A Area(00)/4GN > AKpoost
large area fluctuations in Planck units )
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For a cut of the horizon located at v, get an algebra A(v) x R.

Semiclassical regime: (A Area(co)/4Gn > AKpoost)
S(A(UQ) X R) Z; S(A(’Ul) X R)

[Wall 2011; Faulkner, Speranza 2024]

This is the generalised second law: [Bekenstein]

Sgen(V2) Z Sgen(1)

i.e. the second law of thermodynamics including black holes.

This is superior to previous proofs of the GSL, because it (1) makes sense
without a UV regulator, and (2) accounts for gauge-invariance under boosts.
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For a cut of the horizon located at v, get an algebra A(v) x R.

Semiclassical regime: (A Area(co)/4Gn > AKpoost)
S(A(UQ) X R) Z; S(A(’Ul) X R)

[Wall 2011; Faulkner, Speranza 2024]

This is the generalised second law: [Bekenstein]

Sgen(V2) Z Sgen(v1)

i.e. the second law of thermodynamics including black holes.

This is superior to previous proofs of the GSL, because it (1) makes sense
without a UV regulator, and (2) accounts for gauge-invariance under boosts.

How do we go beyond the semiclassical regime?
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Entropy inequalities typically come from
subalgebras A, C A;.

But here:

A(’Uz) x R Q A(‘Ul) x R

Algebra of later cut not contained in
algebra of earlier cut.

(‘isotony’ is violated)

This happened because a different boost
invariance is imposed in each region.
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Entropy inequalities typically come from
subalgebras A, C A;.

But here:

./4(’02) x R Q A(‘Ul) x R

Algebra of later cut not contained in
algebra of earlier cut.

(‘isotony’ is violated)
This happened because a different boost

invariance is imposed in each region.

This is the reason why the previous approach does not give
a GSL beyond the semiclassical regime.
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Solution: impose invariance under both boosts simultaneously!

Two constraints:

&l Cy
/s \

boost around v = v, boost around v = v,

C5 — (] generates a null translation v — v + s — moves the cuts.

—> fized cuts are not compatible with gauge symmetry

Local subsystems must be defined relative to QRFs.
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Toy MODEL: dynamical cuts

Instead of fixed cuts, use dynamical
cuts, defined covariantly in terms of
dynamical degrees of freedom.

For example: cuts v,, v, may be
defined as the locations at which
infalling particles a, b cross the
horizon.
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Toy MODEL: dynamical cuts

Instead of fixed cuts, use dynamical
cuts, defined covariantly in terms of
dynamical degrees of freedom.

For example: cuts v,, v, may be
defined as the locations at which
infalling particles a, b cross the
horizon.

These are moved around by gauge
transformations in the appropriate
way, and so give rise to well-defined
physical subsystems.

There are many other ways to construct such dynamical cuts.
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In [Jk 2412.01903]: dynamical cuts labelled by a =1,2,....

Each has Hilbert space H, = L*(R): wavefunctions f(v,) of the cut’s location.

Algebra of observables outside of a dynamical cut: a crossed product
dressed to the location of the cut: A(0,) x R.

Now have subalgebra structure: (RHS holds if we condition on the LHS)
’02 = ’l/}l — A(@Q) X R & ./4(’131) X R
Using ordinary QI theory (monotonicity of relative entropy), one may then show:

Uo > 07 = S(A(D2) X R) > S(A(71) x R) + free energy of cuts
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In [Jk 2412.01903]: dynamical cuts labelled by a =1,2,....
Each has Hilbert space H, = L*(R): wavefunctions f(v,) of the cut’s location.

Algebra of observables outside of a dynamical cut: a crossed product
dressed to the location of the cut: A(0,) x R.

Now have subalgebra structure: (RHS holds if we condition on the LHS)
’02 = ’l/}l — A(@Q) X R C ./4(’131) X R
Using ordinary QI theory (monotonicity of relative entropy), one may then show:

Vg 2> 01 => Sgen(U2) = Sgen(¥1) + free energy of cuts

The GSL must account for the heat of quantum clocks.
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Taking QRFSs seriously sheds light on black hole information.

Seen(U2) > Sgen(¥1) + free energy of cuts.
Free energy of cuts can be arbitrarily negative.
—> Sgen Can decrease!

For black hole unitarity, we need something like this to
happen, to recover a Page curve.

Is this a loophole for black hole unitarity?

Speculative argument:

“At late times, QRF becomes entangled with a
large amount of Hawking radiation, bla bla v 7
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Taking QRFSs seriously sheds light on black hole information.

Seen(U2) > Sgen(?1) + free energy of cuts.
Free energy of cuts can be arbitrarily negative.
—> Sgen Can decrease!

For black hole unitarity, we need something like this to
happen, to recover a Page curve.

Is this a loophole for black hole unitarity?

Speculative argument:

“At late times, QRF becomes entangled with a
large amount of Hawking radiation, bla bla v 7

It’s possible this is just an artifact of the toy model.
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The gravitational field itself provides natural QRFs.

[Freidel, JK W.I.P.]

On a null surface (more general than just horizon), the fields decompose:

i + radiative degrees of freedom
7

area element canonical partner

[Ciambelli, Freidel, Leigh]
(‘surface tension’)

(2, 1 give null time coordinates. E.g. ‘affine time’ Vg satisfies 0y, .2 + 2Qu = 0.
Upon quantisation, {2, i give a QRF for null times. Gauge group:

null diffeomorphisms: ~ Diff*(R) > boost, null translation, ...

Constraint is Raychaudhuri equation:

C(v) = 02Q — ud,Q + 87GNQT,,.
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% The many challenges of an €, u QRF for Diff "(R) «

), 1 interact with the rest of the fields via a cubic interaction term Q73,,.
Non-interacting QRFs (like the boost clock and dynamical cuts) are easier.

Quantum mechanical QRFs are typically Schrodinger-quantised (wavefunctions on
configuration space). But €2, u are Kahler-quantised: positive/negative modes.

Well-defined field operators involve normal-ordering. But normal-ordering is not
preserved by diffeomorphisms: the modes get mixed (Bogoliubov transformation).

Normal-ordering the constraint :C'(v): leads to anomalies, Diff " (R) — Virasoro.

Integrating over the gauge group is very useful for constructing observables dressed to
QRFs. But this is subtle on Diff " (R).

(2, 1 states do not have a positive-definite inner product. Hilbert space?

In [Freidel, JK w.1.P.] we address all these problems.
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Dressing time: a decoupled QRF on a gravitational null ray

Ultralocality. We focus on just one null ray.
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Dressing time: a decoupled QRF on a gravitational null ray

Ultralocality. We focus on just one null ray.

Actually, a segment. Edge modes at
endpoints.
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Dressing time: a decoupled QRF on a gravitational null ray

Ultralocality. We focus on just one null ray.

Actually, a segment. Edge modes at
endpoints.

Go to a perturbative regime for matter and
radiation (but non-perturbative for 2, p1).
Treat it as a bunch of scalar fields ¢.

C = 02Q — 19, + 8TGN O, $Dy .
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Dressing time: a decoupled QRF on a gravitational null ray

Ultralocality. We focus on just one null ray.

Actually, a segment. Edge modes at
endpoints.

Go to a perturbative regime for matter and
radiation (but non-perturbative for 2, p1).
Treat it as a bunch of scalar fields ¢.

C = 82Q — 88,0 + 87GN Oy 0y p.

Define ‘half-densitised’ matter ¢ = v/Qé.
3 is conjugate momentum to ().
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Dressing time: a decoupled QRF on a gravitational null ray

Ultralocality. We focus on just one null ray.

Actually, a segment. Edge modes at
endpoints.

Go to a perturbative regime for matter and
radiation (but non-perturbative for 2, p).
Treat it as a bunch of scalar fields ¢.

B &EQ — B0, + 8TGNO, 0, .

Define ‘half-densitised’ matter ¢ = v/Q.
B is conjugate momentum to 2.
‘Dressing time’ V € Diff " (R) defined by

2
B=27 V() =0, V(v) = 1.
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Dressing time: a decoupled QRF on a gravitational null ray

Ultralocality. We focus on just one null ray.

Actually, a segment. Edge modes at
endpoints.

Go to a perturbative regime for matter and
radiation (but non-perturbative for 2, p1).
Treat it as a bunch of scalar fields ¢.

C = 92Q — BI,Q + 8GOy 0Oy p.

Define ‘half-densitised’ matter ¢ = v/Q.
3 is conjugate momentum to ().

‘Dressing time’ V € Diff " (R) defined by

2
B=2%7, V() =0, V(v) = 1.

V is non-interacting with ¢. Under F € Diff ' (R), have V ++ V o F. Use V as QRF.
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x The many challenges of an Q, u QRF for Diff "(R) «

Quantum mechanical QRFs are typically Schrédinger-quantised (wavefunctions on
configuration space). But 2, 4 are Kahler-quantised: positive/negative modes.

Well-defined field operators involve normal-ordering. But normal-ordering is not
preserved by diffeomorphisms: the modes get mixed (Bogoliubov transformation).

Normal-ordering the constraint :C(v): leads to anomalies, Diff " (R) — Virasoro.

Integrating over the gauge group is very useful for constructing observables dressed to
QRFs. But this is subtle on Diff ™ (R).

(10 1101 ave a positlive-delrnnnite 11nnetl TOAUCT. 11Dert ¢

This deals with the first challenge. For the next ones let’s look at some Toy MODELS.
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Toy MODEL: Anomalous Kdahler QRF

=

Hs: Hilbert space of a system with gauge generators Fy, P;.

Gauge group: R?, 2d translations.

‘H : Hilbert space of the frame: a 1d harmonic oscillator.

The position £ and momentum p of the harmonic oscillator
generate a projective (i.e. anomalous) representation of RZ.

Gauge constraints:

C =(+a, C'=("+al,
where ( = Py + 1P, a = % + 1p.

There is a preferred vacuum |0) for the frame, satisfying a |0) = 0.
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What are the observables?

D(A) € B(Hs ® Hp)C" +— gauge-invariant

1-to- I\i

A € B(Hs) +—— gauge-fixed

Dressing map: D(A) = esa=tal | tal=clia D= ()
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What are the observables?

:

D(A) € B(Hs @ Hr)“© +— gauge-invariant
\ <— not an isomorphism

1-to-1

A € B(Hs) +—— gauge-fixed
Dressing map: D(A) = :eb'a—¢a gelal=Cla;

Deformation: D(A)D(B) = D(A x B), where

(comes from moving a,a' past each other)
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Gauge-fixed algebra is (B(Hg), *). AxB =312, % adgi (A) adg (B).
Rich structure, and physical consequences.

For example, it affects von Neumann entropies:

exp(a) — exp*(a) sicpeiokall log — log* = (exp*)™",

S = —tr(plogp) = S = —tr(pxlog” p).

Things simplify in a semiclassical regime.

axb=ab—[(T,all¢,b]. SF S
N g : ,

( ~ Dirac bracket) ( ~ area term)

(In this regime D : B(Hs) — B(Hs ® Hr)® can probably be thought as approximate OAQEC)
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Gauge-fixed algebra is (B(Hg), *). AxB =312, % adgi (A) adg (B).
Rich structure, and physical consequences.

For example, it affects von Neumann entropies:

exp(a) — exp*(a) c- k) log — log* = (exp*) ™",

S = —tr(plogp) = S = —tr(pxlog” p).

Things simplify in a semiclassical regime.

axb=ab—[(T,all¢,b]. S s
N 5 : ,

( ~ Dirac bracket) ( ~ area term)

(In this regime D : B(Hs) — B(Hs ® Hr)® can probably be thought as approximate OAQEC)
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A non-Abelian Toy MODEL: SL(2,R) highest weight QRF

Gauge group SL(2,R), frame Hz = highest weight h irrep, i.e.
Ly |0) = R |0}, L [0 =10 Hr =span{L” |0) | n > 0}.

Then gauge-invariant operators are given by a dressing map:

. ;]
_ «covariant normal ordertnyg

D(A) - *US(Q, QT)AUS(»%; QT)—lz - 5 ko the right of 31

where Ug is SL(2, R) representation on Hg, and 2 = (Lo + h)~'L,.
Deformed product: D(A)D(B) = D(A x B) where

A* B = (0| e*M- Ae™#M-¢=#"M+ B2 M+ )

(M4, My, M_ the generators of SL(2,R) on Hs)
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Enough Toy MODELS.

Dressing time as a quantum reference frame

Quantise dressing time: V — V, an operator acting on €, 3 states.

Get the same structure!

Gauge-invariant operators are given by a dressing map:

D : {Q}" ® B(Hs) = B(Hr @ Hg)PT®

which can be written with a covariant normal ordering as:
D(A) = UV AUV,

where U is the Virasoro representation.
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Loosely speaking: this covariant normal ordering is normal ordering of modes
of positive/negative frequency in dressing time.

(whereas ordinary normal ordering is normal ordering with respect to background time frequency)

For F € DIt "(R): . pyrmn apip=1: £ U1F]: A:UFY),
but FU[F|AU[F~']: = U[F]|:A:U[F1.

This is what makes the dressing map work.

An interesting special case:

— @)= %GN{‘?(’U);U}.

Covariant normal ordering changes the Raychauduri constraint by the
Schwarzian derivative of the dressing time.

(This is the covariant manifestation of the anomaly)
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The deformed product D(A)D(B) = D(A x B) may be explicitly written as

AxB=Ad ; , (A)Ad [ . 1](3).

U[V[adg+]1 U[V[—adg]

2
where 3+ are positive/negative modes, and V[X] € Diff * (R) is defined by X = %, VIX](%o,1) =0,1.

Some examples: (recall ¢ = Q™ '/%¢p)

Qu) x p(v) = Qu)p(v), but Qu)*g(v) # Qu)(v).
Also:

5 3
1 n 20,€2(v) " 8UQ(U)_ + 920 (u) 922 (v).

(u—v—1ie)* (u—v—1i€)?2 u—v—ie

520(u) * 20(v) =

This is a stress tensor OPE.

Pirsa: 25060009 Page 41/45



% The many challenges of an €, x QRF for Diff "(R) «

CubDlc 1mteraction term

K alld Ay I'\;ll\ll‘f_‘[.‘-| CULS ] ale €aslEl

Quantum mechanical QRFs are typically Schrodinger-quantised (wavefunctions on
configuration space). But 2, u are Kahler-quantised: positive/negative modes. ¢

Well-defined field operators involve normal-ordering. But normal-ordering is not
preserved by diffeomorphisms: the modes get mixed (Bogoliubov transformation). v/

Normal-ordering the constraint :C(v): leads to anomalies, Diff " (R) — Virasoro. v/

Integrating over the gauge group is very useful for constructing observables dressed to
QRFs. But this is subtle on Diff " (R). ¢
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What is thys?

States of (2, 5 have indefinite inner product — they do not form a Hilbert space.
For example:

2

|2 P ) — .

V2 4Gy
But the space of states obtained by acting on the vacuum |0) with dressed

operators D(A) has a positive definite inner product. Therefore, the physical
Hilbert space can be identified with the GNS Hilbert space of the vacuum:

Hpnys = {D(A) |0> AE B(HS)}°

v—v"

Intuition: at the gauge-fixed level 9%Q) is a stress tensor at central charge
c > 1, which is straightforward to represent on a Hilbert space.

(c.f. also what happens with worldsheet conformal invariance in string theory)
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Algebras and entropies of null ray segments

Each interval of dressing time has an algebra Ay, ,,) of dressed operators.

Vacuum modular flow is a diffeomorphism — so these algebras have traces!
Each interval of dressing time has a well-defined von Neumann entropy.

Moreover, isotony is obeyed:

[vo, v1] C [vg, V1] = Apug,e1] C Apr 0]

0

— diffeomorphism-invariant generalised second law
without auxiliary degrees of freedom.

Valid on any null surface:
horizon, lightcone, O(causal diamond), non-extremal,
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Thank you for listening!
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