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Abstract:

Our search for a quantum theory of gravity is aided by a unique and perplexing feature of the classical theory: General Relativity
“knows” about its own quantum states (the entropy of a black hole), and about those of all matter (via the Quantum Focusing
Conjecture). The results we are able to extract from classical gravity are inherently non-perturbative and increasingly
sophisticated. Recent breakthroughs include a derivation of the entropy of Hawking radiation, a computation of the exact integer
number of states of some black holes, a proof of the QFC, and the construction of gravitational holograms in general spacetimes.
The nature of the oracle, and its full power, remain unknown.
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A. Gravit;} As an Oracle
B. Holograms in General Spacetimes

Raphael Bousso, UC Berkeley
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|. Gravity knows about its own quantum states

Hawking (1974): black holes radiate. This shocked people, because classically
black holes cannot emit anything. But classically, ordinary matter cannot radiate
either.

The real surprise is that Hawking was able to compute exactly how a black hole
radiates: thermally, at a particular temperature. From this, he could deduce the
number of quantum states of a black hole, exp(A/4G), where A is the area of the
horizon.

This is outrageous, because Hawking made no assumptions about the
microscopic structure of a black hole; nor did he have a black hole in his lab that
he could heat up. Classical gravity appears to know about its own quantum states.
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|. Gravity knows about its own quantum states

Recent development:

lliesiu, Murthy, and Turiaci (2022) were able to
compute the exact integer number of states of
a black hole using only gravity.

The gravitational path integral receives an
infinite number of contributions from
geometries allowed by general relativity, none
of which are integers.

But the terms coincide with the
Hardy-Ramanujan-Rademacher expansion
developed in analytic number theory for integer
partitions. It sums up to an integer.
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Il. Gravity knows about the quantum states of matter

Generalized Second Law (Bekenstein 1972):
dA > =4S

<— Covariant Entropy Bound (RB 1999):
A

<
Smatter(L) = 4Gh

<— Quantum Focusing Conjecture
(RB, Fisher, Leichenauer, Wall 2015):

e <0.
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Il. Gravity knows about the quantum states of matter

The Quantum Focusing Conjecture has an immediate, highly nontrivial implication
for Quantum Field Theory without gravity.

Quantum Null Energy Condition (RB, Fisher, Leichenauer, Wall 2015):
h

7 P WL -
kk_Zﬂ'

Proven (laboriously) in QFT (Ceyhan, Faulkner 2018).

General Relativity has become a precise, quantitative discovery tool for the
quantum description of matter.
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lll. Gravity knows about the entropy of the quantum gravity theory

What is the entropy of the CFT quantum
state reduced to a portion B of the
boundary?

Minimal Surface

Classical gravity can answer this question
(Ryu-Takayanagi 2006, Hubeny et al. 2007):
the area of the minimal stationary bulk
surface v homologous to B.

56 A1)

GR performs the replica trick: it computes
all integer Renyi entropies and performs an
analytic contination to the von Neumann
entropy (n = 1). Lewkowycz, Maldacena 2013 Bou

Figure: Nishioka et al. 2009
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lll. Gravity knows about the entropy of the quantum gravity theory

This can be used to prove the
Quantum Focusing Conjecture!
Shahbazi-Moghaddam 2022

More precisely, Arvin proved a slightly weaker
form of the conjecture, which nevertheless
suffices for all known applications (covariant
bound, GSL, singularity theorems, causal
wedge is inside entanglement wedge, SSA of
EW, etc.)

In fact the conjecture can be stripped down
further: “Discrete Max Focusing”
RB, Tabor 2024
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lll. Gravity knows about the entropy of the quantum gravity theory

This prescription for the
entanglement wedge has
been refined over the years:
Ryu, Takayanagi (2006);
Hubeny et al. (2007), Faulkner
et al. (2013).

The Quantum Extremal

Surface prescription

(Engelhardt, Wall 2014) is

essential for the Page curve _ b
result (see later). e
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IV. Gravity knows that quantum information is lest preserved

4
Entropy of
outgoing
radiation

Hawking’s
calculation —™

Thermodynamic entropy

" / of the black hole

Expected
from unitarity
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Hawking (1976) found
that information about
the initial quantum
state is lost when a

black hole evaporates:

the entropy of the
Hawking radiation
grows monotonically.
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IV. Gravity knows that quantum information is lest preserved

The Quantum Extremal Surface prescription
computes the entropy of the radiation directly,
without first computing p.

Penington 2019

Almheiri, Engelhardt, Marolf, Maxfield 2019

Recall that GR performs the replica trick: it
computes all integer Renyi entropies and
performs an analytic contination to the von
Neumann entropy (n = 1).

Lewkowycz, Maldacena 2013

Penington et al. 2019

Almheiri et al. 2019
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IV. Gravity knows that quantum information is lest preserved

Contradiction?

Suppose that the
gravitational path integral
computes some kind of
average. Then it is consistent

that S(p) # S(p).

What is this average, in o 7

fy :!I . anay

general? More broadly, - tieeits &‘:‘ ﬁii%l’;:ﬂ

: : =!.='E . R2iLt .
how does the oracle work? S i 4 . : '
RB, Tomasevic 2019 RB, Wildenhain 2020
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V. Gravity knows the reach of quantum gravity

What portion of the AdS bulk is
determined by the CFT quantum

state reduced to a portion B of the Minimal Smface
boundary?

Classical gravity can answer this /
question (Wall 2014): the

homology region enclosed by the
minimal stationary bulk surface.

The reconstructible region is called
the entanglement wedge of the
boundary region B.

Figure: Nishioka et al. 2009
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V. Gravity knows the reach of quantum gravity

Recent refinement: to determine the size of the
entanglement wedge, gravity treats the areas of
surfaces as a resource for a specific single-shot
communication task.

Akers, Penington 2020

The max-entanglement wedge, emax, is the largest
region such that quantum state merging across across
any intermediate homology surface can be performed
using its area as a resource.

The min-entanglement wedge, émin 2 €émax, is defined
in terms of a weaker reconstruction task. It obeys
complementarity: if B is the boundary complement of B,
then emin(B) is the bulk complement of emax(B).
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V. Gravity knows the reach of quantum gravity

If not for the vagaries of its discovery, the entanglement wedge of an AdS
boundary region B would simply be called the hologram of B.

lts construction is entirely (semi-)classical and unrelated to the AdS setting.

Therefore, the gravitational construction of holograms should generalize beyond
AdS!

Pirsa: 25060007 Page 15/31



Basic |dea
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The fundamental causal unit in the bulk is a
wedge, a set that is equal to its double
spacelike complement: a = &”. Unions of
wedges are always double-complemented.

O
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Basic |dea

The hologram is a map from an “input” bulk
wedge a to an equal or larger bulk wedge e(a).
RB, Penington (2021, 2022)

The homology condition of AAS/CFT becomes
two requirements. First, e(a) must contain the
input wedge a. This is analogous to requiring
that the asymptotic boundary of EW(B) in AdS
contain the CFT region B.
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Basic |dea

The hologram is a map from an “input” bulk
wedge a to an equal or larger bulk wedge e(a).
RB, Penington (2021, 2022)

The homology condition of AAS/CFT becomes
two requirements. First, e(a) must contain the
input wedge a. This is analogous to requiring
that the asymptotic boundary of EW(B) in AdS
contain the CFT region B.
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Basic |dea

Second, e(a) must be spacelike to &, the
“fundamental complement” of a. This is
analogous to requiring that the asymptotic
boundary of EW(B) must not overlap with B.

ais the wedge spanned by doubly-infinite-length
timelike curves that stay within the spacelike

complement &'.
RB, Kaya 2025
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Basic ldea
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The fundamental causal unit in the bulk is a
wedge, a set that is equal to its double
spacelike complement: a = &”. Unions of
wedges are always double-complemented.

O
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Hologram of a Bulk Region a

Among all wedges that contain a
and are contained in &,

and which are quantum extremal
except on the edge of a,

e(a) is the wedge with smallest
generalized entropy.
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Evidence for Holograms of Bulk Regions

e[CW(B)] |
.\“\/e[CW(B)]
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The AdS prescription can be recovered as a special case:

maxEW(B) = enax[CW(B)]
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Evidence for Holograms of Bulk Regions

Nesting, no-cloning, and min- and max-strong
subadditivity: For a, b, ¢ mutually spacelike wedges
satisfying
Emin(ab) = emax(ab) , eémin(bC) = emax(bc) ,
Emin(b) = émax(b) , and emin(abc) = emax(abc) ,

€ = €min = €max Satisfies

Hmax gen[€(0C)|€(b)] = Hmax gen|€(abc)|e(ab)] ;

Himin,gen[€(bC)|€(b)] > Hmin,genl€(abc)|e(ab)] . RB, Penington (2023)
RB, Tabor (2024)
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New Evidence: Complementarity Theorem
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Towards Gravity/Gravity Duality
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These properties support the interpretation of e(a) as an algebra in the
fundamental theory. They suggest that it is possible to reconstruct holographically
from gravitating (bulk) regions.

The precise meaning of this statement is not yet clear.

A possible interpretation is that the semiclassical operators in the input region a
generate the full algebra of the fundamental theory pertaining to e(a).

An example where we can make this precise is if ais an asymptotic bulk region in
AdS. The quasi-local bulk operators in a are local CFT operators, and those can
generate the full CFT algebra.
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Further examples
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Rindler wedge in asymptotically flat spacetime with generic matter content. The
matter focuses the Rindler horizons, causing the gaps between the edges of 3,
e(a), and a. Left: Portion of a Cauchy slice containing all edges. Middle: Penrose
diagram. Right: Conformal infinity.
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Figure: Here ais a Rindler wedge with a notch (a spacelike inward deformation. Again the
gaps are generic, but e(a) always fills in the notch. In exact Minkowski, & = e(a) would be
an undeformed Rindler wedge. (The Penrose diagram does not show the notch.)
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Left: Shell contained in a single static patch of de Sitter space. The fundamental
complement a prevents e(a) from including the entire universe. Middle and Right:
If the past and future of a includes past or future infinity, then a = @ and e(a) = M.
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Left: Shell contained in a single static patch of de Sitter space. The fundamental
complement a prevents e(a) from including the entire universe. Middle and Right:
If the past and future of a includes past or future infinity, then a = @ and e(a) = M.
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Trivial reconstructibility of M (one-dimensional Hilbert space) is associated with
the absence of future or past infinity, not with closed spatial topology.
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