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Abstract:

We construct algebras of diff-invariant observables in a global de Sitter universe with two observers and a free scalar QFT in two
dimensions. In the limit when the observers have infinite mass and are localized along geodesics at the North and South poles, it
was shown in previous work (CLPW) that their algebras are mutually commuting type Il_1 factors. Away from this limit, we show
that the algebras fail to commute and that they are type | non-factors. Physically, this is because the observers' trajectories are
uncertain and state-dependent, and they may come into causal contact. We compute out-of-time-ordered correlators along an
observer's worldline, and observe a Lyapunov exponent given by 4nf_dS, as a result of observer recoil and de Sitter expansion.
This should be contrasted with results from AdS gravity, and exceeds the chaos bound associated with the de Sitter temperature
by a factor of two. We also discuss how the cosmological horizon emerges in the large mass limit and comment on implications
for de Sitter holography.
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Introduction and Summary

» At this point, the holographic dictionary in AdS/CFT is
well-developed on multiple fronts (correlation functions,
entanglement, probes of chaos, complexity, ...)

How can the lessons we have learned apply to de Sitter space?

This talk is based on the conjecture that the worldline of an
observer is a holographic screen

associated an entropy to the algebra of operators
accessible to an observer, which agrees with the generalized
entropy of the observer's cosmological horizon.

This suggests that the observer-centric hologram should have
a dual description of the entropy of the observer's
cosmological horizon.
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Introduction and Summary

> considered global de Sitter space with two observers at
the North and South Poles, with algebras A; and Ag.

» They showed that the algebras factorize: A} = Ag, and
A N Ar = C (compare with H = H; @ HR).

» Although the Hilbert space does not factorize, one can define
a trace on A; and Ag, and thus compute —trplog p, with

p € Agr or A;. The trace is unique up to a state-independent
normalization.
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Introduction and Summary

» In AdS/CFT, Ar and A, represent the exteriors of a
two-sided black hole. Algebraic factorization has been
observed semiclassically , and also exactly in JT
gravity . It is inherited from Hilbert space
factorization of two copies of the CFT.

» In this talk, | will show that the de Sitter algebraic
factorization fails due to chaotic observer dynamics.

» The presence of two observers does not imply two
independent holographic screens.
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Introduction and Summary

» CLPW worked in the following limits:
o GN — 0.
© Observer has infinite entropy.
9 (;51 < Mobs .

» We relax assumption 3. We do not find a satisfactory
generalization of the type Il trace of CLPW. The algebra is a
type | non-factor. There is still a sensible definition of the
Hartle-Hawking state |HH).

» The Hartle-Hawking state furnishes a probability distribution
for the observer's mass. From CLPW,

(HH|f(HRg)HH) = [ dE f(E)e 7sE,
J Eg
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Introduction and Summary

» We relax assumption 3. We do not find a satisfactory
generalization of the type |l trace of CLPW. The algebra is a
type | non-factor. There is still a sensible definition of the
Hartle-Hawking state |HH).

» The Hartle-Hawking state furnishes a probability distribution
for the observer's mass. From CLPW,

(HH|f(HR)|HH) = dE f(E)e™ sk,
J Eg

» In two dimensions, we compute corrections to this distribution
for cosmic scale masses (345 = 27).

(HHIF(HR)HH) = [ ds Sta”h“f( sz+l).

Jo cosh?(7s) 4
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Introduction and Summary

» |n two dimensions, we compute corrections to this distribution
for cosmic scale masses (345 = 27).

(HH\f(HR)HH}:/ ds Sta”h“f( s2+1).
J0

cosh?(s) 4

» We compute an OTOC of operators on the observer's

worldline. The scrambling time is logarithmic in the observer's
mass, and the Lyapunov exponent is f—’

dS

» These calculations narrow the search for the putative
holographic dual.
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Quantization of a scalar field

» We work in two dimensions,

ds®> = —dt® + d6? cosh? t.

» Let ©°(t.0) be a scalar field of mass m = \/% + s2, where
s > 0. We expand it as

S(2.6) = Y Wi(r.0)an + (W(2.6))"a],
neZ

[anl' a;fu] — (5”1”2‘
Morally, W (t.6) is “e/nf—iwnt "

» The Fock vacuum is also known as the Bunch-Davies state, or
Hartle-Hawking vacuum.
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Quantization of an observer

» The Hilbert space of an observer is the one-particle subspace
of the Fock Hilbert space, but with the mass promoted from a
parameter to a quantum number.

» Note that

/ dtdf\/—g (V3L (t.0))" W32 (t.0) = Spynd(s1—52) = (51 1|52 ma) .

» The Hilbert space of an observer Hps is defined to be the

span of W?(t.#) <> |sn) for n € Z and s > 0, with the inner
product given above.
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We consider a dS, universe with two observers and a free
scalar QFT. The physical Hilbert space is

T ,Hobs.L & %Obs.R ® IHQFT
- SO(2.1) '

H:

This is the subspace of singlets of the isometry group. There
is a well-defined inner product on the space of singlets
(related to the work of ).

The subspace of ‘H in which the QFT is in the Bunch-Davies
state is called the vacuum sector.

In the classical limit, the vacuum sector describes
configurations in which the observers are located at antipodal
points. The observers must have the same mass.
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» States in the vacuum sector are labeled by s > 0,

an L |s.—n) T ZWS tr. 00V (tr.Or)(—1)",

neZ neZ
= wiR(tL- 0. tr. HR)

and they are normalized so that

(s1]s2) = s1tanh(7sy) 0(s1 — s2).

(tr,01) (tr,0r)

= Wip(tL. 0. tr.OR)

Pirsa: 25060003 Page 12/31



Diagrammatic rules

(tp.01) (tr,OR)

= W?_R(t;_. 0. tR. HR)

® (t2,62)

= 3 (12, 62) 057 (11, 61)

nez

.(11?91)
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S1
L 4 SA NS2 = <51|<')RP52.R<¥)R|51>

51

10/17
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51 S1 S

= (s1|oRr Ps,.R @R Ps;.r ®R Ps,.R ®R|51)
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= (52’0R0L|51>-

S1
592

‘\S\ = (sp|oLoR|st)
S1

10/17

Pirsa: 25060003 Page 16/31



Matter operators

cosh(mssy) cosh(mss)

cosh(msy) cosh(msy)

><cosh(7r33)

cosh(7s1)
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Hartle-Hawking state

><cosh(7r33)

cosh(7s1)

19]_

» The Hartle-Hawking state |HH) is the unique state (up to
normalization) that obeys

oL |HH) = g |[HH) .
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Hartle-Hawking state

HH) ::_Lx o)

cosh s’

» The probability distribution on the observer's mass is
determined by

(HHf(HR)\HH)z/ dsmf( 3+sz).
JO

cosh? 7s 4

—2m™m

and becomes me at large m.
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Hartle-Hawking state

» The probability distribution on the observer’'s mass is
determined by

<HHf(HR)\HH>=/ dsmf( 1+sz).

Jo cosh? s 4

and becomes me~2™™ at large m.

» When the geodesic approximation is valid, this agrees with the
Euclidean path integral up to a phase
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The Observer's algebra

» The right observer's algebra Ag is generated by Hg, oR, ....
The left observer's algebra A is defined analogously.

» Unlike CLPW, we find that the right and left algebras do not
commute. For example, [¢[, ®gr| annihilates the vacuum
sector, but is not identically zero.

» We also find that the HH state does not furnish a trace on
Ag. In particular,

(HH|Ps, RORPs, RORPs; RORPs, RORIHH)
# (HH|Ps, rorPs; RORPsy RORPs, rOR|HH)
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The Observer's algebra

» Unlike CLPW, we find that the right and left algebras do not
commute. For example, [¢1, ®gr| annihilates the vacuum
sector, but is not identically zero.

» We also find that the HH state does not furnish a trace on
Agr. In particular,

(HH‘PS_[.R(‘.)RP52.R(")RP53.R()RPS4_R(-)R|HH>
# (HH‘PS}R(_')RP53_R(_')RP54_R(')RP51_R(_)R|HH>

S1

N\

S1 ! 81

» The semiclassical limit is the limit of large s; with fixed s; — ;.

In this limit, the HH state becomes tracial.
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The Observer's algebra

» Other than H|, there are no obvious candidates for operators
in A,. We conjecture that A}, is generated by functions of
H.

> Because Ag = (A})’, Ag is a direct integral of type | factors.
It only becomes type |l in the semiclassical limit.

» When the observer is fully quantized and dynamical, we have
not found an algebraic way to generalize the notion of their
cosmological horizon. This contrasts an analogous study in JT
gravity
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QOut-of-time-ordered correlator

» Let V and W be simple Hermitian operators in a large N
chaotic quantum system. An example of an OTOC at inverse
temperature 3 is

Fi(t) :=Tre s Hy(0)e= tHW(t)e=7HV(0)
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QOut-of-time-ordered correlator

» Typically,

Fs(t) ] 1
F00 "N

where N is the number of qubits, and A; is the Lyapunov
exponent, which cannot exceed 2—;

e/\Lt_J'_..._

» The scrambling time is

o — )\Zl log V.
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QOut-of-time-ordered correlator

» Typically,
Fs(t) o1 1
F5(0) N

where N is the number of qubits, and A; is the Lyapunov
exponent, which cannot exceed 22

e’\Lt+...

» The scrambling time is

bop )\[1 log V.

» |n this work, we compute an OTOC of four operators along
the observer's worldline. We find a scrambling phenomenon
associated with the exponential expansion of de Sitter space.
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OTOC along Observer’s worldline

» Consider the OTOC

(HH‘()R( )()’é,( )()R( — U2)()A(—— - u1)|_|/\|HH>-

(HH[TA|HH)

where

00
OplT] — e~ HRT 4 e HRT [y = / ds P; g.
JN

» We take large A and large 7, holding e’ 2/\ ~ fixed.
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OTOC along Observer’s worldline
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OTOC along Observer’s worldline

2

x Qe (-5) "

e _— A~
~ 2ilxs x_ B (L g 5T B
= / dxy dx_ e+ = (Q|p2 (—) ™+ R
J —oo

T4
e
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OTOC along Observer’s worldline

» Rescaling P™ and P—, this becomes

x (QleR (0) [P7) (P~ | (1) 1)

» The leading correction to the OTOC is of order (g—/\)2 The
Lyapunov exponent is 2 = % and the scrambling time is

25 log(2A).
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Summary and Conclusion

| 2

=

We quantized a system of two observers and a scalar QFT in
dS,.

The right observer's algebra Ag consists of all local quantum

fields dressed to the observer, and the observer's Hamiltonian.

There is no algebraic analogue of the observer's horizon away
from the large mass limit.

The Hartle-Hawking state may be defined algebraically, and
furnishes a probability distribution for an observer's mass.

The OTOC naively indicates that chaos spreads faster than
the maximum rate allowed for large N chaotic systems.

Future directions: incorporate gravitational corrections, make
contact with top-down proposals involving DSSYK.
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