Title: Flatness and spikes in Ponzano-Regge
Speakers: Jonathan Engle
Collection/Series: Quantum Gravity
Subject: Quantum Gravity

Date: May 29, 2025 - 2:30 PM

URL: https://pirsa.org/25050045
Abstract:

The original spinfoam amplitude, Ponzano-Regge, has two properties in seeming contradiction: (1.) It can be written as an
integral of a product of Dirac delta functions imposing that holonomies be exactly flat, and (2.) In its original sum-over-spins
form, its leading order large spin asymptotics consist in Regge calculus, modified to include an additional local discrete
orientation variable for each tetrahedron, which, when fixed inhomogeneously, leads to critical point equations for the edge
lengths which do not necessarily imply flatness, but allow spikes. Of course, this apparent contradiction between flatness and
spikes appears only for triangulations with bubbles, for which both of these formulations of the model are divergent and
ill-defined anyway, and this may be the resolution of the paradox. However, we explore the possibility of another resolution of
this paradox which may also have relevance for the semiclassical regime of 4D spinfoams, in which a similar sum over local
orientations appears.
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OUTLINE

The point: To explore a tension to see what can be learned

Zl:
5

C.

a.

Ponzano-Regge:

In connection formulation: Manifest flatness
Large spin asymptotics: Locally oriented Regge!

Equations of motion for fixed local orientations: Non-flatness!

Possible resolutions for flatness vs non-flatness?

Contradiction seems to arise only when model diverges and so is ill-defined anyway. So,
strictly speaking, there is no contradiction. Satisfactory?

Perhaps more careful handling of discrete nature of spins would avoid non-flatness for
large spins.

Is connection possibly sensitive to orientation, so that connection is flat even though
geometry is not?

Critical point equation from varying local orientations not yet considered. Continuum theory
suggests this might imply homogeneity of orientations, imposing flatness also for large
spins.

4D Spinfoams: If (d.) is the resolution, might something similar happen in 4D spinfoams? 4D
Large spin asymptotics also gives locally oriented Regge, and tetrad gravity EOM are equivalent to

GR only with homogeneity of orientation!!
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From spin to connection formulation:

Diagrammatic notation elements:
pi(g) : V; = V;  denotes spin j irrep of SU(2). j e N/2, g SU(2).

1 if j3 + jo > j3 & cyclic and j; + jo + js € N

dim (V}, ® Vj, ® Vj,) = { 0 otherwise

Ji J2 J3
denotes specific element of Inv (V}, ® V;, ® Vj},) with phase convention chosen
F
bilinear form ‘¢’ on V}, and its in-

J
e denotes p;(g) : V; — V; m U verse, used to contract, raise and
J

lower indices.
J

. - : : _ Aq---Agy Aq---Ag; _
In spinorial realization V; = {¢p71 4% = w( 1 23)}, €(A1-As;)(By-Ba;) = €AL(B1€|A1|By " €|Az;|Ba;)

3
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From spin to connection formulation:

Given a 3D triangulation A with edges ¢, triangles ¢, and tetrahedra o,

W — / 1 2j¢ 24, 4+ 1 1 Ji+jz+3da {31 .7:2 33}
PR . 1;[( ) (Je )1:[( ) 1;[ e

N.B. 2jp, 31 +J2 +J3 €N,
so egigns are well-defined!

5|
= > 11025 + 1) HJ; 11 7 Js
{je} ¢ 7

where {j¢}' := {je}ecinta C N/2.

Assume, for simplicity, no boundary.
Using the following identity once at each triangle i Jz h L s
3

1 Ji joJ
e gives an integral over a g, €SU(2) at each triangle ¢, j, /
& SU(2)

e reduces the graph to a product of one loop per edge Ji /2 Jo g
¢, each containing the g;’s around that edge.
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From spin to connection formulation:

= /Dw5(F(w)) = /DwDeexp (i/e/\F(w)) — /’DwDe exp (iS]e,w])”

also shows first order formalism underlying Ponzano-Regge.
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Large spin asymptotics: Locally oriented Regge!

Setting jo = A\j7 (€ N/2) for j7 fixed.

[Ponzano and Regge (1968);

6
1 J2 g 1 Z T
{ ]1 ]2 33 ja(")a + —_ Dowdall, Gomes, and Hellmann (2009);
ja J5 o | aSoo V3V 4

Christodoulou, Langvik, Riello, Roken, and Rovelli (2012)]

where V is the volume of the tetrahedron with edge lengths Aj, and
O, is the external dihedral angle at edge a (angle between the normals to the two triangles at a).

Wep ~ Z H ZJE (24¢ + 1)H Zeetﬂ H Z \/WGXP@HG (ng@g(a) + Z)

{ge} ¢ t o po= lco
_ :'ﬂ')Qjﬁ 2]5 + 1) Zfet Je eXp ZHJJ ( jf(ﬂ- _ 9(’(0)) + Tl-)
{%; {E}E[ H H v12mV(o eez; )

where 6y(0) is the internal dihedral angle in o at ¢ (angle inside o between the planes of the two
triangles at £).

(This choice to express the —1’s as exponentials is a generalization of that in Chistodoulou et al. and agrees for their triangulation.)
6
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Large spin asymptotics: Locally oriented Regge!

Wen~ 3 3 (H \/W) i(;jg ((2_m|+ > MU)W_ 5 ugeg(a)) S

{de} {ps} gEL, o€,

1 , T
—: Z Z (H 127TV(0)> exp i (SR_# — 1 Zug)

{jff}’ {f"‘o}

where Ty and ¥, respectively denote the set of triangles and tetrahedra containing ¢, and

_ gjg ((2— ol + Y ug) m— > uaf?e(ff))

acy oEYy

e Since Ponzano-Regge has an SU(2) connection formulation, it’s underlying
structure is that of a first order theory with triad e and connection.

e The sign i, appearing here is the discrete analogue of sgn(det(e)).
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Large spin asymptotics: Locally oriented Regge!

Using the fact that, for £ € intA, |Ty| = |X¢|, and, for £ € OA, |Ty| = |Z¢| + 1,
for 1o = +1 this ‘locally oriented Regge action’ Sg ,, becomes

SR,—I—l — Z jE (27T - Z 61?(0')) + Z jE (ﬂ' Z 62(0')) - SRegge

fcint A gEYy {COA TEY,

Exactly the Regge action, including correct boundary terms, for a general triangulation!
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The choice in writing signs as exponentials

In foregoing derivation,

e We made a choice to write (—1)%7¢ = (e'™)?7¢ for each £ and
(—1)Z€et Jo — (e—'m)zt’-et J¢ for each t.

e If we had made the reverse choice (—1)%7¢ = (e *")%J¢ and (—1)266”’2 = (e'™)Leet It
then we would be led to an alternative action Sg , such that Sg _ = —SRegge-

e Note this choice is just a choice of how to write the Ponzano-Regge amplitude. Thus, it cannot affect the
asymptotics of Ponzano-Regge. Ponzano-Regge is a well-defined model and so has only one asymptotics!

However,

e we will next consider the critical point equations from varying the j,’s, which makes sense only if we first extend
the action to continuous values of the j,’s, beyond half-integers.

e This extension does depend on the choice of how the signs are written as exponentials.
e Hence, the resulting actions and critical point equations will depend on this choice.
e Seems to contradict the fact that Ponzano-Regge, and hence its asymptotics, cannot depend on this choice.

e Nevertheless, following the literature, we assume that the resulting asymptotics tell us something heuristic
about Ponzano-Regge.
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Equations of motion for fixed local orientations:

Sru = Zje ((2 — | Ty -+ Z ﬂa) T — Z H«;Qe(ﬂ))

£ g€y g€,

Critical point equation from varying and internal j,:
Recalling that Regge showed that the term from variation of the deficit angle vanishes,
and using that |Ty| = || for internal ¢, we have

> piobe(o) = (2 aEY ug) r = Y piobe(o) = (2+ pR¢! —ua)) ™

ocEY, oES, oEY, TEY

giving flatness, Z O¢(c) =27, only for p = 1.
ogEXy

10
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Equations of motion for fixed local orientations:

Simplest triangulation with spike: 4-1 Pachner move (*7 triangulation):

vertices: 4 boundary a = 1,2, 3,4
1 internal P

tetrahedra: 4, o,, labeled by the vertex a not contained.

edges: 6 boundary £,
4 internal ¢, :=¥¢,p
: D o Tp,| =Tt | =3
triangles: 4 boundary t, € o,
6 internal t,, = o, N oy o Yo, ={0b}ota = |Ze,|=3

Critical point equations Z 1o 0(0) = (2 e Z Ma) o (Z Ly — 1) o

from varying each internal spin jy: oes, sy oen,

11
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Equations of motion for fixed local orientations:

For pi1 = po = p3 = pa = +1:
21 = Qfl (02) i 951 (03) + 951 (04)

2m =04, (01) + 0, (03) + 00, (04), etc.

0= 0¢,(02) + 0¢,(03) — 0, (04)
U= 9;22(0'1) o 922(0'3) - 952 (04)
0=20¢,(01) + 0p,(02) — Op,(04)
2 = 04,(01) + 0p,(02) — 0r,(03)
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Flatness around all 4 internal ¢,
as expected.

Flatness around /4,

but not around ¢4, s, £3! ; 3
Spike!
E.g., in plane 1 £4:
Not flat!
log fe.(74) 3
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Equations of motion for fixed local orientations:

2D analogue:

01+ 60 =03 01T 6, —_— Conical singularity - not flat!

Key point: If interior dihedral angles around a hinge don’t sum to 27,
then the geometry in a neighborhood of the hinge is not embeddable into R"™ and so is not flat!

13
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Both exact flatness and arbitrarily curved spikes?
Contradiction? Resolution?

. Spikes generally correspond to bubbles for which model is ill-defined

e In connection formulation, Redundant §’s: Divergence
e In spin formulation, unbounded sums over internal spins in spikes: Divergence

The reasons for the divergence are opposite in the two formulations: Too much flatness vs. spikes!
Strange!

e However, because both formulations are ill-defined in this case, there is no strict
mathematical contradiction.

e Does this satisfy us?

. More care about discrete nature of spins. We already saw one contradiction from treating the

spins as continuous — the dependence on exponential expression of sign factors. Might greater care
about discrete nature of spins somehow resolve this flatness vs. spikes tension?

14
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Both exact flatness and arbitrarily curved spikes?
Contradiction? Resolution?

3. Is the connection at spikes flat, even if geometry is not?

e Geometry (uniquely determined by the j,’s) is flat at ¢ if and only if Z Oe(0) = 2.
oE2ly

e But the equation of motion from Sg , is Z Oe(0) = (2 = Z (po — 1)) .

oEY, oEXy
e Could this somehow be the condition for flatness for the spin-connection determined by the
triad e, which knows about orientation?

e Is the spin-connection even sensitive to the orientation of the triad? Consider €' = pe’,.

Then w(é)? — Qéb[ﬁa[ eb}] + eakébtedjadeb = .-

= 20(Opp)e™V ey + we)y

In a coordinate patch in a neighborhood of a sign change, choose coordinates (x,y, z) such
that p = sgn(z). Then pudpp = 2sgn(x)d(x)dpx = 0 if we regularize sgn(z) symmetrically.
Then w(pe) = w(e), so it seems w is not sensitive to . 15
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Both exact flatness and arbitrarily curved spikes?
Contradiction? Resolution?

4. Variation of the local orientation variables? We have considered critical point equations from
variation of the spins. But we have not considered varying ..

e [s essentially discrete - no continuum approximation possible. Can stationary phase theorem be
extended to handle this?

e Consideration of continuum triad gravity suggests the corresponding equation of motion
minimizing the action imposes homogeneity of the ..

e Would lead to flatness also in the spin formulation, bringing it in line

— not only with connection formulation,

— but also classical 3D gravity, where the equation of motion is flatness.

16
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Triad gravity
First order formulation Sle,w] := /e A F(w)

5Sle, w :/(56/\F(w)—|—e/\dw6w) :/(66/\F(w)+dwe/\6w)
o doe=0 = w=uwle)
= E.O.M.

] e ['(w)=0 Flatness
Second order formulation

St i= Sle,w(e)] = [ € Flw(e)) = [ u(o)Rlgul Vctgi)d’s
where p(x) := sgn(det(e(z))) and gap(z) := €’ () ey ().
e Varying g.,(x): E.O.M. says g, is flat except possibly where p(x) changes sign.

e Thus, if u(x) is inhomogeneous, S is not necessarily zero on-shell. If it is homogeneous, S is zero

on-shell.
- Homogeneous u(z) minimizes the action.

- Also recovers consistency with first order formulation,
yielding flatness everywhere.

17
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Variation of p and Homogeneity of orientations?

e u(x) is discrete, so stationary phase theorem doesn’t apply to its variation.

e Can we nevertheless somehow conclude that minimization of the action by homo-
geneous p(z) implies inhomogeneous u(x) are suppressed in the second order path
integral?

e [t seems it must be so, in order to have consistency with first order path integral.

Homogeneous p(x) is also necessary to obtain geometric flatness,
which is the Einstein equation for 3D.

Relevance for 4D spinfoams

e In 4D, asymptotics of spin-foams also yields locally oriented Regge calculus.

e There, too, to obtain correct Einstein equations for the geometry, the orientation must be
homogeneous.

e If we can make precise an argument that inhomogeneous orientations are suppressed in
Ponzano-Regge, maybe we could make a similar arguent in 4D7

18
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THANK YOU
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