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Abstract:

In this talk, | will survey recent developments about the connection between neural networks and models of quantum mechanics
and quantum field theory. Previous work has shown that the neural network - Gaussian process correspondence can be
interpreted as the statement that large-width neural networks share some properties with free, or weakly interacting, quantum
field theories (QFTs). Here | will focus on 1d QFTs, or models of quantum mechanics, where one has greater theoretical control.
For instance, under mild assumptions, one can prove that any model of a quantum particle admits a representation as a neural
network. Cherished features of quantum mechanics, such as uncertainty relations, emerge from specific architectural choices
that are made to satisfy the axioms of quantum theory. Based on 2504.05462 with Jim Halverson.
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Motivation: new tools for quantum field theory.

We still lack a suitably general framework for understanding quantum field
theories. When we first meet QFTs, we define them via expressions like

Z= thp exp (—%/ddxﬁ(w)> ,

which involve a local Lagrangian density.

This is appropriate for certain free or weakly interacting QFTs. However,
© Many (perhaps most) QFTs have no Lagrangian description.
© Some theories are described by multiple Lagrangians due to dualities.
© Even when we have a Lagrangian, one should define the measure D.

These issues motivate us to develop new techniques to understand QFTs.
One toolkit which has proven useful in other domains is neural networks.
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Neural networks are universal approximators.

Why might neural networks be helpful? Roughly, the path integral asks us
to integrate over functions. Every function can be approximated by a NN.

Theorem 1 (Cybenko)

Let f : R — R be a continuous function and fix a compact set K C RY.
For any ¢ > 0, there exists a neural network with a single hidden layer,

N

@(X) T Z Z W!-(I)O' (Wé-o)xj + bgo)) =l b(l) :

=1 =1
where o : R — R is a non-polynomial activation function such that

sup |f(x) — o(x)| <e.

xeK

Can we replace a path integral with an “integral over neural networks" ?
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Three questions about neural networks.

To delineate the scope of this talk, let me point out that there are (at
least) three broad sub-topics about NNs that one could investigate:

© Expressivity: how “powerful” is a neural network, in the sense of its
ability to approximate functions?

@ Statistics: what are the properties of ensembles of neural network
outputs, given a particular probability distribution for the weights?

© Training: how do neural networks evolve over training time, as their
parameters are tuned to minimize some loss function?

Point (1) is the subject of Cybenko's theorem. Point (3) is interesting, but
is not our focus here: we instead think of ensembles of NN with fixed
parameter distributions (e.g. at initialization or after finite training time).

Point (2), and its relation to QFT, is the subject of the rest of this talk.
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Roadmap.

Goal: explore the conditions under which the statistics of neural networks
can reproduce the correlation functions of local operators in conventional
(local, Poincaré invariant, unitary) quantum field theories.

The plan is as follows:
v Part 1: Introduction and motivation.
[1 Part 2: Generalities on neural network field theory.
[1 Part 3: New results on neural network quantum mechanics.

[] Part 4: Summary and future directions.
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A general notion of neural network.

For the purposes of this talk, a neural network is any parameterized family
of functions ¢y : R” — R™ depending on a set of parameters 6, which are
random variables drawn from a probability distribution P(6).

A simple example of a neural network is

¢o(t) = cos(t + 0), 6 ~ U[0,27],
which means 6 is drawn from a uniform distribution on the interval [0, 27].
The function ¢y inherits randomness from the random variable 6.

A particular draw of the parameter, say # = 7, then determines an
instance of the neural network, here ¢(t) = cos(t + ).

In the picture of a conventional neural network before, the parameters are

the weights W!-(-n) and biases bf") at each layer of the network.
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NN = 0d QFT.
Given a NN architecture ¢y and parameter density P(6), get correlators:
G (x1,...,xn) = (d(x1)...d(xn)) = /de P(6) dg(x1) ... dg(xn) -

Viewing P(0) = e °l], this is a 0-dimensional quantum field theory.

0d z(°>=/ dg e Sl
feR

1d : 20 = / Dx(t) e X8
Paths x(t)

d>2: 2= / Dp(x)e= e
Functions ¢(x)

From the 0d point of view, correlators G(") are just observables built from
the “fields” 6 that depend on auxiliary variables x;.
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When do you “grow dimensions”?

Key question in NN-FT.

Under what conditions do the observables G(") in the 0d QFT
(¢g, P(0)) reproduce correlators of a QFT in d > 0 dimensions?

In particular, we wish to know when the G(") satisfy the Osterwalder -
Schrader axioms which allow reconstruction of a local, unitary Lorentzian
QFT from the Euclidean correlation functions computed by the NN.

@ Euclidean covariance: the G(" should transform covariantly under
rotations and translations.

@ Cluster decomposition: correlators factorize, G(PT9) — G(P)G(9) a5
the p points are taken far from the g points.

© Reflection positivity: certain Euclidean correlators that compute
norms {2/ | 4) in the Lorentzian Hilbert space must be non-negative.
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Example: Gaussian free field.

The standard construction of the free scalar in math literature defines

where the fx are an orthonormal basis of functions on some Q ¢ RY and
the 6, are i.i.d. random variables drawn from a unit normal distribution.

We interpret this as a neural network with infinitely many parameters 0.

This gives one example where a neural network (0d field theory) can
“mock up” the behavior of a higher-dimensional field theory.
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NNs with infinitely many parameters.

The preceding example suggests that, in order to engineer NN-QFTs, it is
important to have infinitely many parameters. What behaviors are possible
in such infinite-parameter limits? There are at least three of interest:

© Gaussian process limits. These involve an infinite-width limit which,
by the CLT, leads to NNs with normally distributed outputs.

@ Stochastic process limits. NNs ¢y : R — R written as sums of
real-valued functions with random coefficients give stochastic
processes, or theories of Euclidean quantum mechanics (1d QFTs).

© Distributional limits. NNs such as the Gaussian free field example in
d > 2 diverge almost surely for any input x, but can be integrated
against test functions. These are Euclidean QFTs in d > 2.

The initial work on NN-FT [Halverson, Maiti, Stoner '20] focused on Gaussian
process limits. Let us briefly review the main idea of these limits.
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The NN-GP correspondence.

We return to the single hidden layer architecture from before,

N d
Po(x) = \/]LN S wio (W:S'O)Xj) :

=1 =1
N St

with biases set to zero for simplicity. The parameters in this NN are
0 = {W&O), wf.(l)} which we take independent and identically distributed.

Essentially due to the central limit theorem, we have the following.”

Theorem 2 (Neal)

As N — oo, the distribution of ¢g(x) approaches a Gaussian process:
lim ¢o(x) ~ N (u(x), K(x,y)) .
N—oo

with mean p(x) and kernel K(x,y) fixed by the distribution of weights.

There is a nice visualization of this limit here.
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A GP is like a free field theory...

A Gaussian process is a family of random functions ¢g(x) such that, for
every finite set of inputs xi, ..., xx, the joint probability distribution

P(dg(x1)s. .., dg(xx))

Is @ multivariate normal distribution: the characteristic function is

k
. | 1 .
E | exp (; E akqﬁg(x;))] =exp [ —5 E aiajK(xj, xj) + i E agp(xe)
=1 iJ 14

If =0, this is like a source-free “free field theory” with associated action
Stél = [ d*xdy 0K (x. ) oly).

where [d%y K(x,y) 1K(y,z) = 6(@(x — 2).
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...but a GP is never really a QFT.

All moments of Gaussian distributions are finite for any values of the
inputs. Therefore in any Gaussian process, one has

(Po(x)Pa(y)) < c0.

lim
y—)X

However, for any unitary QFT in d > 2, the 2-point function of non-trivial
local operators must diverge at coincident points.”

Thus, while the GP limit of NNs gives an interesting theory of random
functions, it can never reproduce the correlators of a unitary QFT.

This is intuitively reasonable. We know that for d > 2, the path integral
measure is supported on distributions rather than functions.

In d = 1, the path integral measure (for the free case, Wiener measure) is
supported on continuous paths which are differentiable nowhere.

"One can argue for this by the Killén-Lehmann representation or by assuming the
QFT is controlled by a unitary CFT in the UV, where (¢(x)o(y)) = |x — y| 2.
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Part 3: New results on neural network quantum
mechanics.

Christian Ferko (Northeastern & IAIFI) Neural Networks and Quantum Mechanics May 23, 2025

Pirsa: 25050040 Page 20/32



QFT in one spacetime dimension.

Restricting to d = 1, a quantum mechanical theory is defined by correlators

G (ta,...,t) = (x(t1) ... x(ta)},

which depend on n time coordinates t; € R.

Such a theory is closely related to the notion of a stochastic process, by
which we mean a collection of real-valued random variables

xt ={x(t)|te T},
where T is the index set for the process (either R or [a, b]).

The defining data of a stochastic process x; is an assignment, for any
collection of n variables t; € T and for any n, of a joint PDF

P(x(t1), ..., x(ta)) -
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Requirements of quantum models.

Every stochastic process x; defines a set of correlators G("). But not every
collection of G(" is suitable for defining a quantum theory.

Eventually we wish to impose Osterwalder-Schrader. But first we work
with “minimal quantum models” or MQMSs which only obey:

© Mean-square continuity: lim¢_s < x(t) — x(s)[? > =0

@ The 1d version of Kallén-Lehmann:

o0 e @]
f dm p(m)e~mt=sl 220y "emEolt=sl (0 | x | )2,

0 n=1

where p(m) = S°°° (0| x | n)|*d (m — E,) is normalizable.

The first condition implies that sample paths x(t) must be continuous,
and that G is continuous. The second implies that G(2) is always finite.
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A universality theorem for NN-QM.

One of the results of our paper is the following.

Any Euclidean quantum mechanical model x(t) satisfying assumptions (1)
and (2) admits a neural network description x; = ¢g(t) with architecture

do(t) = (x(t)) + > _ Okfu(t).
k=1

where f(t) are continuous, orthogonal real-valued functions and 0y are
pairwise uncorrelated random variables.

The proof of this result relies on the Kosambi-Karhunen-Loeve theorem
from the literature on stochastic processes.

This means that every MQM is a NN-SP, a stochastic process which
admits a NN description. We also use the term NN-QM for such models.
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OS axioms.

Under what conditions can such a Euclidean quantum model be
analytically continued to real time? We need to satisfy the OS axioms:

© Euclidean covariance: the stochastic process x;. , should be
equivalent” to x¢, for any a, and the process x_; should be equivalent
to x¢. That is, x; should be a stationary symmetric process.

© Cluster decomposition: the stochastic process x; should be mixing,
which implies ergodicity.

© Reflection positivity: for any collection of positive times t; > 0 and
any bounded function F of n variables,

(F(x(t1),-..,x(tn)) (F(x(—t1),...,x(—t,)))*) > 0.

“Two stochastic processes x; and y; are said to be equivalent if, for any collection of
times ti,..., t,, the joint PDFs obey P (x(t1),...,x(tn)) =P (y(t1),...,y(tn)).
Christian Ferko (Northeastern & IAIFI) Neural Networks and Quantum Mechanics May 23, 2025
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Mechanisms for reflection positivity.

The reflection positivity (RP) condition is interesting and subtle. In our
paper, we explore two ways to engineer RP for NNs or SPs:

Q A “parameter-splitting” mechanism for NN-QM, where we assume
{0} = {6°} U {0} U {67} where ¢y(t) is independent of 87 for
t < 0 and independent of 6~ for t > 0. This lets us write

(F(TFY) = [ @ p@0) ( [ a0 P 0) F (Gun). ... du(en))
([ a0 p@0.07) (F(oul-ta)....ont-t)) )

2

_ / d6° P(6°) ‘ / do+ Po(6°,6") F (d(tr), ..., o(tn)

Q If x; is a symmetric Markov process, then it is RP. This follows from
work of Nelson and OS, but we present an elementary proof for 1d.
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Markov is fragile but RP is robust.

If x; and y; are Markov processes, then z; = x; + y; need not be Markov,
and f(x;) for a deterministic function f need not be Markov.

However, linear combinations of RP processes are RP. We prove more:

Theorem 4

Let x; be a reflection-positive stochastic process and consider a family of
bounded random functions realized by a neural network architecture ¢g
with parameter density P(6). Then the stochastic process

Yitt— ¢G(Xt)

is also reflection-positive.

This facilitates the construction of deep NN-QM models. Choose a

collection of RP processes xlg'.) (e.g. symmetric Markov) as inputs to a NN

with random parameters. Then the output y; is also RP.
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Spectrum of example deep NN-QM model.

Deep NN-QM Energy Eigenvalues for Various Parameters
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Part 4: Summary and future directions.
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Summary.

We have given an overview of applications of neural networks to quantum
field theory, focusing on the 1d (QM) case where one has greater control.

Some take-away messages include:

@ Neural networks ¢y with random parameters 6 give a powerful way of
parameterizing random functions. Often there are universality results.

@ To reproduce field theory correlators, we need NNs with infinitely
many parameters. Depending on how such infinite-parameter limits
are taken, different behavior can result (GP, SP, distributional NN...).

Under mild assumptions, any 1d field theory admits a NN description.
OS axioms can be engineered for 1d NN-QM systems in several ways.

Applying any NN to a RP quantum system preserves RP. One can
construct a large class of unitary quantum models using deep NNs.
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Further research.

There are several potential directions for extending our analysis.

© Use training to construct NN-QM models that reproduce desired
features (correlators, energies, etc.) of a “target” QM theory.

© Prove or disprove the conjecture that every reflection-positive process
can be realized as a deep NN-QM with symmetric Markov inputs.

© Construct interacting d > 2 field theories using neural networks, which
requires understanding NN distributions (generalized functions).

Progress on these directions could improve our understanding of functional
integration using neural network tools, and perhaps help us develop a
clearer picture of what a quantum field theory really is.

Thank you for your attention!
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