Title: Learning and testing quantum states of fermionic systems
Speakers: Antonio Mele

Collection/Series: Quantum Information

Subject: Quantum Information

Date: May 21, 2025 - 11:00 AM

URL: https://pirsa.org/25050039

Abstract:

Abstract: The experimental realization of increasingly complex quantum states in quantum devices underscores the pressing
need for new methods of state learning and verification. Among the various classes of quantum states, fermionic systems hold
particular significance due to their crucial roles in physics. Despite their importance, research on learning quantum states of
fermionic systems remains surprisingly limited. In our work, we aim to present a comprehensive rigorous study on learning and
testing states of fermionic systems. We begin by analyzing arguably the simplest important class of fermionic
states—free-fermionic states—and subsequently extend our analysis to more complex fermionic states. We meticulously
delineate scenarios in which efficient algorithms are feasible, providing experimentally practical algorithms for these cases,
while also identifying situations where any algorithm for solving these problems must be inherently inefficient. At the same time,
we present novel fundamental results of independent interest on fermionic systems, with additional applications beyond
learning and characterizing quantum devices, such as many-body physics, resource theory of non-Gaussianity, and circuit
compilation strategies. (Talk based on https://arxiv.org/pdf/2409.17953 , https://arxiv.org/pdf/2402.18665)
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Outline

* Introduction
» Learning fermionic Gaussian states

* Learning r-doped fermionic Gaussian states
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Introduction

* Advances in guantum technologies have inspired a new field: Quanium Learning [1].

* Problem 1: Learning quantum states (‘tomography’).
»  Without any prior assumption, this task is hard. [1] x

« But, if the unknown state belongs to a specific class, efficient learning may be possible.
(e.g., MPS [2], stabilizers [3], #-doped stabilizer states [4,5], ...)

* Problem 2: Testing quantum states [6].

(“Decide if a state is close to or far from a given class”).

(e.g., Is this state a stabilizer state or not? [7-11])

[1] Anshu et al, A survey on the complexity of learning quantum states, Nature Physics (2024)
[2] Lanyon et al, Efficient tomography of a quantum many-body system, Nature Physics (2017)
[3] Montanaro, Learning stabilizer states by Bell sampling (2017)

[4] Grewal et al, Efficient learning of quantum states prepared with few non-clifford gates (2023)
[5] Leone et al, Learning t-doped stabilizer states, Quantum (2023)
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[6] Montanaro et al, A Survey of Quantum Property Testing, Theory of Computing (2013)
[7] Gross et al, Schur-Weyl Duality for the Clifford Group, Comm. in Math. Phys. (2023)
[8] Arunachalam et al, Polynomial-time tolerant testing stabilizer states, (2024)

[9] Hinsche et al, Single-copy stabilizer states, (2024)

[10] Bao et al, Tolerant testing of stabilizer states, (2024)

[11] Liang et al, Tolerant Testing of Stabilizer States with Mixed State Inputs, (2024)

Page 5/22



Fermions are ubiquitous in physics

- Fermions are a type of quantum particle Standard Model of Elementary Particles

three generations of matter interactions / force carriers
(fermions) (bosons)
| Il 1
mass =22 MeVic? =1.28 GeV/c? =173.1 GeVic? 0 =125.11 GeVic?
charge | % # % 0 a
spin | Y U v C Y t 1 Q a H
up charm top gluon higgs
=4.7 MeVic? =96 MeWic? =4.18 GeV/c? o]
14 14 -1 0
Ve d Y% S Y% b 1 b
down strange bottom photon
=0.511 MeV/c? =105.66 MeWfc? =1.7768 GeVic? =91.19 GeVic? ~
a e -1 =5 1 0 =
w " " 1 —
H 2 | &
¢ N
electron muon tau Z boson -
—_— S
<1.0 eVic? <0.17 MeVi/c? <18.2 MeV/c? =80.360 GeVic? =
0 0 0 +1 n
v Ve + v V1 1 W —
electron muon tau T
neutrino neutrino heutrino W boson V)
—
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Fermions are ubiquitous in physics

» Fermions are a type of quantum particle.
They make up all the matter!

« In all “guantum technologies” (chemistry, OO
semiconductors, etc) of today, fermions o
—electrons—play a key role.

* Designing materials and chemicals FII F Tr
= hard computational problems about fermions.
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Introduction

* Despite their importance, research on learning fermionic states remains limited.

[11] Aaronson et al, Efficient tomography of non-interacting fermion states (2023)
[12] O’Gorman. Fermionic tomography and learning, (2022), ...

>

-

¥

Our work aims to provide a comprehensive study on Learning and Testing fermionic states.

v We start with the simplest fermionic states: ‘Gaussian states’.
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v We then analyze more complex states: ‘t-doped Gaussian states’.
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We design practical efficient algorithms, while also showing cases where any algorithm must be inefficient.

Along the way, we uncover fundamental properties of these states.
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Fermionic Gaussian states

(also called free-fermionic states, non-interacting fermions, states prepared by 1D-matchgates circuits, ...)

* Fermionic Gaussian states = Gibbs states of “Free-fermions” Hamiltonians
e_)BHfrcc
p o Tr(e_ﬁHfree) 2

Hfree — Z h,u,r/'.}/uf)fu

p<vre[2n]
Majorana operators
k—1 k—1
» Majorana operators: Yok—1 1= H Zi | Xk, Yok = H Zi | Y, forke{l,...,n}
(They are just some Pauli strings) Hi=1 i=1
i i inc- _ ,—1Hgree
e Gaussian unitaries: U = ¢
* Why Gaussian states/unitaries: © \
Q
* Model free-fermion physics (many metals, semi- and superconductors) " = »
Q Q

» Classically easy to simulate
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Fermionic Gaussian states

(also called free-fermionic states, non-interacting fermions, states prepared by 1D-matchgates circuits, ...)

* Fermionic Gaussian states = Gibbs states of “Free-fermions” Hamiltonians
e_)BHfrce
p o Tr(e_ﬁHfree) 2

Hfree — Z h,u,r/'.}/uf)fu
p<vre[2n]

Majorana operators

» Majorana operators:
(They are just some Pauli strings)
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Fermionic Gaussian states

- Gaussian states p are fully characterized by their “correlation matrix” I'(p) € R*"**",
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How to learn fermionic Gaussian states?

« Gaussian states p are fully identified by their correlation matrix I'(p).

« So it is enough to estimate I'(p), but to which accuracy?

Problem (Learning states/Tomography)
Let £ > 0. Given N copies of the (unknown) state p € &, the goal is to output 5 such that (with high probabiity)

lp—plli <

* We need norm bounds between Gaussian states and their correlation matrices!

(Our first main) Theorem
Let p, p be Gaussian states, then:

N 1 N
lp—plli < IT(p) —T(P)|1
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Norm bounds between Gaussian states

Theorem
Let p, p be Gaussian states, then: 1

IT(p) = T(P)lloc < llp = Al < 5IIT(0) — T'(A)l11

» “If we know I'(p) with accuracy &, we know the Gaussian state itself with trace distance error ¢.”

Theorem
Let p, p be pure Gaussian states, then:

N 1 N
lp—pll1 < 5IT(p) —T(p)][2

* These bounds are “optimal™ !
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How to learn fermionic Gaussian states?

Theorem (Efficient learning of Gaus _' 5)
N = 0(ﬂa/€2) copies of the unknown Gaussian state p suffice to learn p such that ||p — p||; < &.
a = 4 if p is possibly mixed,

a = 3 if pis pure.

« Previous state-of-art bound (known only for pure-states) was O(nS/ 84), while our is O(n3/ 82).

[11] Aaronson et al, Efficient tomography of non-interacting fermion states (2023)
[12] O’Gorman. Fermionic tomography and learning, (2022)

* The algorithm is just: estimate the correlation matrix and “regularize it”.

» Experimentally feasible protocol: ‘simple’ measurements, time-efficient and “noise robust”.
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Testing whether an unknown state is Gaussian

— i
. Close to be Gaussian

ﬁ @ p a;rgec?:il{]hgm (Or far to be Gaussian)

— @ p Classical computer

OUTPUT:

Problem (Property testing)
Given N copies of the (unknown) state p, decide (for ez > €, > 0) if:

- Case A (p is close to be Gaussian): There exists a Gaussian state ¢ such that ||p — o||; < &4, or

- Case B (p is far from being Gaussian): ||p — o||; > &, for all 6 Gaussian states.
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Testing whether an unknown state is Gaussian
Theorem (Testing Gaussian states is Hard!) x

To solve the testing problem, N > €(2") copies of the unknown state are necessary.

| .

There is no measure of ‘fermionic magic (non-Gaussianity)’ which can be efficiently estimated. @

 What if the unknown state—or the states in the Gaussian set—have rank < R?
N > Q(R) copies necessary.

« Is there an efficient algorithm for R = poly(n) ?

Theorem (Efficient testing for | states)
The Gaussian testing problem can be solved with sample&time complexity poly(#, R).
(under appropriate conditions on &4, £p).

Pirsa: 25050039
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Outline

e |ntroduction

» Learning fermionic Gaussian states
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f-doped fermionic Gaussian states

» Gaussian states are efficient to classically simulate and to learn, unlike general quantum states.

* How to interpolate between the two?

» t-doped Gaussian state = state prepared by Gaussian (1D-matchgates) unitaries + at most 7 ‘magic’ gates.

10)
10}
10}
10)

10) -
10) -

10)

&

&

_ E.g.ie exp(if y37475Y6),
- « SWAP gate ...

Gl‘— 1

SO
Gaussian unitary

* Why non-Gaussian circuits/states:

* They model interacting physics

» Universal for Quantum Computation

k-mode (non-Gaussian) unitary

Q Q

s ]
s} (o]

+ [

» Classically simulable if t = O(log(n)), no longer for t > @w(log(n)). What about their learnability?

Pirsa: 25050039

Spoiler: The same!
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Theorem (Magic compression theorem): non-Gaussian unitary
supported only on O(?) qubits

0 ———— :.: — |0)
10) - — 10)

o

10)- 10)

04— o -
3 Bl e G = G

0)-—  — 10) —
10) 10) —
|0) - SEE— |0 -

Gaussian unitar
Any f-doped state |y) can be written as |y) = G (1, ® 1,_g,) | 0)®", 4

Implications: . More efficient compilation of non-Gaussian circuits (“avoid redundancy”).

Analogous theorem holds for “Clifford + T":

[1] Oliviero, Leone, Lloyd, and Hamma, Unscrambling Quantum Information with Clifford Decoders ,Phys. Rev. Lett. 132, 080402 {2024).
[2] Grewal, Iyer, Kretschmer, Liang, Efficient learning of quantum states prepared with few non-clifford gates (2023)
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Idea for Learning r-doped Gaussian states

Crucial idea for tomography algorithm:

1) Imagine that we can learn G (....Yes, we canl)

2) Apply G~ to | )

3) Do full state tomography on the first O(¢) qubits.
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By estimating and processing
the correlation matrix of |y).

Page 20/22



Theorem (Efficient learning of -doped Gaussian states)
For t = O(log(n)), t-doped Gaussian states can be learnt in poly(n)-time & sample.

«  What if ¢ is larger than log(n)?

Theorem (Hardness learning of w(log(n))-doped Gaussian states)

If t > w(log(n)), there is no poly(n)-time algorithm to learn t-doped Gaussian states,
up to common crypto-assumptions (i.e., “RING-LWE cannot be solved by quantum computer in sub-exp-time”).

The runtime of our algorithm poly(n,2°) is “optimal”.

Further remarks

Experimentally feasible protocol: single copy, “simple” measurements, “noise robust”.
(“approximate t-doped”/mixed state learning).

Our algorithm extends to all “¢~-compressible states”. (e.g., ground states of impurity models [1])
lw) =G, ®1,_54) 0)®"

We provide an efficient testing algorithm for f-compressible states.

[1] S. Bravyi and D. Gosset, Complexity of quantum impurity problems, Commun. Math. Phys. 356, 451-500 (2017)
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Summary

 Optimal trace distance bounds for Gaussian states, and efficient learning.

* Hardness for testing general Gaussian states, but efficient for low-rank states.
« Magic-compression theorem for r-doped states, and efficient learning/testing of f-compressible.

« Critical threshold for efficient ‘Learnability’ = log(n) magic gates.

“A new form of state-complexity coming into play”.

» We showed analogous results for Bosons. [1,2]

Open questions

: : . hey can be ‘compressed’ as well, i.e., U, = G,(u, @ I, _,1)CG
* Learning f-doped Gaussian unitaries. (They & s A, ® I,_o())Gp)

(Very recently solved for fermions! [3].) I :.: 1 B _

| &l

* Testing Gaussian unitaries. : -

* Optimal learning and testing of Gaussian states. - ' '

*  Agnostic tomography.

[1]1 E A. Mele, A. A. Mele, L. Bittel, J. Eisert, V. Giovannetti, L.. Lami, L. Leone, and S. F. E. Oliviero, Learning quantum states of continuous variable systems, arXiv 2024.
[2] L. Bittel, F. A. Mele, A. A. Mele, S. Tirone, and L. Lami, Optimal estimates of trace distance between bosonic Gaussian states and applications to learning, arXiv 2024.

[3] Vishnu lyer, Mildly-Interacting Fermionic Unitaries are Efficiently Learnable, ArXiv, 2025.
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