Title: Universal Microscopic Descriptions for Anomalies and Long-Range Entanglement

Speakers: Ryohei Kobayashi

Collection/Series: Quantum Information

**Subject:** Quantum Information **Date:** May 07, 2025 - 11:00 AM **URL:** https://pirsa.org/25050024

### **Abstract:**

I will present a unified framework for understanding the statistics and anomalies of excitations—ranging from particles to higher-dimensional objects—in quantum lattice systems. We introduce a general method to compute the quantized statistics of Abelian excitations in arbitrary dimensions via Berry phases of locality-preserving symmetry operations, uncovering novel statistics for membrane excitations. These statistics correspond to quantum anomalies of generalized global symmetries and imply obstructions to gauging, enforcing long-range entanglement. In particular, we show that anomalous higher-form symmetries enforce intrinsic long-range entanglement, meaning that fidelity with any SRE states must exhibit exponential decay, unlike ordinary (0-form) symmetry anomalies. As an application, we identify a new example of (3+1)D mixed-state topological order with fermionic loop excitations, characterized by a breakdown of remote detectability linked to higher-form symmetry anomalies.

Pirsa: 25050024 Page 1/28

# Universal Microscopic Descriptions for Anomalies and Long-Range Entanglement

Ryohei Kobayashi (IAS)

w/Yu-An Chen (PKU), Po-Shen Hsin (KCL), Hanyu Xue (PKU), Yuyang Li (PKU) arXiv: 2412.01886

w/ Po-Shen Hsin (KCL), Abhinav Prem (IAS)

arXiv: 2504.10569

Perimeter Institute, Quantum Information Seminar



Pirsa: 25050024 Page 2/28

## Statistics of excitations, and Anomalies

Statistics of quasiparticles (anyons): topological order, spin liquids

[Wen, Wang=Senthil,...]

Nontrivial statistics often implies nontrivial low-energy spectrum, as only bosons can condense.

Associated with dynamic consequence of 't Hooft anomalies of higher-form symmetries; forbids confined phases

[Gaiotto=Kapustin=Seiberg=Willett,...]

Anomaly and anyon statistics constrain entanglement structure of many-body systems; enforces Long-range entanglement

[Bravyi=Hastings=Verstraete, Aharanov=Touati, Li=Lee=Yoshida,...]

Anyons can be non-invertible, but in this talk we are mostly interested in invertible excitations (symmetries).



Pirsa: 25050024 Page 3/28

## Microscopic definition of statistics

Gapped local Hamiltonian system in (2+1)D: How to define statistics of quasiparticles in microscopic lattice models?

**T-junction**: [Levin=Wen]

$$\left|U_{02}U_{03}^{-1}U_{01}U_{02}^{-1}U_{03}U_{01}^{-1}\right|_{1 = 0}^{3} = e^{i\Theta} \left| \begin{array}{c} 3 \\ 1 \\ 0 \end{array} \right\rangle = \left| \begin{array}{c} \exp[i\left(-\theta\left(U_{01}, \right) + \theta\left(U_{03}, \right) - \theta\left(U_{02}, \right)\right) \\ + \theta\left(U_{01}, \right) - \theta\left(U_{03}, \right) + \theta\left(U_{02}, \right) \end{array} \right\rangle \right|_{1 = 0}^{3} = \left| \begin{array}{c} \exp[i\left(-\theta\left(U_{01}, \right) + \theta\left(U_{03}, \right) - \theta\left(U_{03}, \right)\right) - \theta\left(U_{02}, \right) \\ + \theta\left(U_{01}, \right) - \theta\left(U_{03}, \right) - \theta\left(U_{02}, \right) \end{array} \right\rangle$$

This process indeed does half-braiding of two identical particles:



To say it's an invariant, we further need to check stability against perturbations.



## Microscopic definition of statistics

Gapped local Hamiltonian system in (2+1)D: How to define statistics of quasiparticles in microscopic lattice models?

**T-junction:** [Levin=Wen]

$$\left|U_{02}U_{03}^{-1}U_{01}U_{02}^{-1}U_{03}U_{01}^{-1}\right|^{3} \left|U_{02}U_{03}U_{01}^{-1}\right|^{3} = e^{i\Theta} \left|U_{02}U_{03}U_{01}^{-1}U_{02}U_{03}U_{01}^{-1}\right|^{3} + \theta\left(U_{01}, \triangle\right) - \theta\left(U_{03}, \triangle\right) - \theta\left(U_{02}, \triangle\right) + \theta\left(U_{02}, \triangle\right)\right|^{3} + \theta\left(U_{01}, \triangle\right) - \theta\left(U_{03}, \triangle\right) + \theta\left(U_{02}, \triangle\right)\right|^{3} = e^{i\Theta} \left|U_{02}U_{03}U_{01}^{-1}U_{02}U_{02}^{-1}U_{03}U_{01}^{-1}U_{02}U_{02}^{-1}U_{03}U_{01}^{-1}U_{02}U_{02}^{-1}U_{03}U_{01}^{-1}U_{02}U_{02}^{-1}U_{03}U_{01}^{-1}U_{02}U_{02}^{-1}U_{03}U_{01}^{-1}U_{02}U_{02}^{-1}U_{03}U_{01}^{-1}U_{02}U_{02}^{-1}U_{03}U_{01}^{-1}U_{02}U_{02}^{-1}U_{03}U_{01}^{-1}U_{02}U_{02}^{-1}U_{03}U_{01}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{03}U_{01}^{-1}U_{02}U_{02}^{-1}U_{03}U_{01}^{-1}U_{02}U_{02}^{-1}U_{03}U_{01}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}U_{02}^{-1}U_{02}^{-1}U_{02}^{-1}U_{02}^{-1}U_{02}^{-1}U_{02}^{-1}U_{02}^{-1}U_{02}^{-1}U_{02}^{-1}U_{02}^{-1}U_{02}^{-1}U_{02}^{-1}U_{02}^{-1}U_{02}^{-1}U_{02}^{-1}U_{02}^{-1}U_{02}^{-1}U_{02}^{-1}U_{02}$$

- ✓ Invariant under choices of unitary by phases, initial excitation configurations
- ✓ Invariant under perturbations nearby the ends of unitaries

Question: Spins of Abelian anyons should be quantized. Is this T junction a quantized invariant? (cf. Vafa's theorem)



## Quantization of T-junction

T junction is a quantized invariant. Let's see this explicitly for Abelian anyons with Z2 fusion rule. [RK=Li=Xue=Hsin=Chen]

$$U_{02}U_{03}^{-1}U_{01}U_{02}^{-1}U_{03}U_{01}^{-1}\begin{vmatrix} 3 \\ 0 \\ 0 \end{vmatrix} = \exp[i\left(-\theta(U_{01}, \triangle) + \theta(U_{03}, \triangle) - \theta(U_{02}, \triangle)\right) + \theta(U_{02}, \triangle) + \theta(U_$$

Let's say each unitary is finite depth local circuit.

Key observation is that the triple commutator of operators with no common overlap must vanish:

For instance,

## Quantization of T-junction

( 4 x T junction ) for Z2 Abelian anyons is the combination of triple commutators:

$$\exp\left[4i\left(\theta(U_{01}^{-1}, \triangle) + \theta(U_{03}, \triangle) + \theta(U_{02}^{-1}, \triangle)\right) \\
+ \theta(U_{01}, \triangle) + \theta(U_{03}, \triangle) + \theta(U_{02}, \triangle)\right)\right] \\
+ \left(\left[U_{02}, U_{03}\right], U_{12}\right]\right) \times \left\langle\left[\left[U_{01}, U_{02}\right], U_{13}\right]\right\rangle \times \left\langle\left[\left[U_{03}, U_{01}\right], U_{23}\right]\right\rangle \\
\times \left\langle\left[\left[U_{02}^{-1}, U_{03}^{-1}\right], U_{12}\right]\right\rangle \times \left\langle\left[\left[U_{01}^{-1}, U_{02}^{-1}\right], U_{13}\right]\right\rangle \times \left\langle\left[\left[U_{03}^{-1}, U_{01}^{-1}\right], U_{23}\right]\right\rangle \\
\times \left\langle\left[\left[U_{03}, U_{02}\right], U_{23}\right]\right\rangle^{2} \times \left\langle\left[\left[U_{02}, U_{01}\right], U_{12}\right]\right\rangle^{2} \times \left\langle\left[\left[U_{01}, U_{03}\right], U_{13}\right]\right\rangle^{2} \\
= 1$$

This shows that the spin of Z2 Abelian anyons through T-junction must be quantized as 0, 1/4, 1/2, 3/4.

We will see that such mechanism for quantization is observed in a very general setup.



Pirsa: 25050024 Page 7/28

## Quantization of T-junction

T junction is a quantized invariant. Let's see this explicitly for Abelian anyons with Z2 fusion rule. [RK=Li=Xue=Hsin=Chen]

$$U_{02}U_{03}^{-1}U_{01}U_{02}^{-1}U_{03}U_{01}^{-1}\begin{vmatrix} 3 \\ 0 \\ 0 \end{vmatrix} = \exp[i\left(-\theta(U_{01}, \triangle) + \theta(U_{03}, \triangle) - \theta(U_{02}, \triangle)\right) + \theta(U_{02}, \triangle) + \theta(U_$$

Let's say each unitary is finite depth local circuit.

Key observation is that the triple commutator of operators with no common overlap must vanish:

For instance,

$$\left\langle \left. \bigwedge \right| \left[ \left[ U_{02}, U_{03} \right], U_{12} \right] \right| \left. \bigwedge \right\rangle = 1 \qquad \qquad \left| \theta \left( U_{03}, \bigwedge \right) + \theta \left( U_{02}, \bigwedge \right) + \theta \left( U_{03}, \bigwedge \right) \right. \\ \left. + \theta \left( U_{02}^{-1}, \bigwedge \right) + \theta \left( U_{02}, \bigwedge \right) + \theta \left( U_{03}, \bigwedge \right) \right. \\ \left. + \theta \left( U_{02}^{-1}, \bigwedge \right) + \theta \left( U_{03}, \bigwedge \right) \right] = 0 \pmod{2\pi}$$

### Generalized statistics

Such invariants can be defined in generic space dimensions, with generic invertible extended excitations.

Example: Z2 1-form symmetry in (3+1)D. 24 step unitaries:

$$\mu_{24} := U_{014} U_{034} U_{023} U_{014}^{-1} U_{024}^{-1} U_{012} U_{023}^{-1} U_{013}^{-1}$$

$$\times U_{024} U_{014} U_{013} U_{024}^{-1} U_{034}^{-1} U_{023} U_{013}^{-1} U_{012}^{-1}$$

$$\times U_{034} U_{024} U_{012} U_{034}^{-1} U_{014}^{-1} U_{013} U_{012}^{-1} U_{023}^{-1}$$



### "Fermionic loops"

[Thorngren, Chen=Hsin, Fidkowski=Haah=Hastings, RK=Li=Xue=Hsin=Chen]

We will give the general framework for such invariants, and discuss physical consequences.

@/Q @ @

### Framework for Generalized statistics

Setup:

- Gapped local lattice system, with tensor product Hilbert space
- Finite invertible p-form symmetry with fusion group G, generated by a finite depth unitary circuit (G can be non-abelian w/p = 0)

End of symmetry operators correspond to the extended excitations.

Input:

- Possible configurations of excitations  $\mathcal{A}$  (on a simplicial complex embedded in space): finite group
- Set of symmetry operators S: symmetry generators creating excitation configurations

Example... T junction

•  $\mathcal{A}: G$  (=ZN) anyon configurations on



$$\mathcal{A} = G^3$$

(anyons on four vertices fuse to vacuum)

•  ${\cal S}$  : set of anyon string operators on edges. Six generators of G<sup>6</sup> (# of edges)  $\partial:{\cal S} o{\cal A}$ 

### Framework for Generalized statistics

Invariant is a sequence of unitaries acting on a state, getting back to the original one

$$U_{02}U_{03}^{-1}U_{01}U_{02}^{-1}U_{03}U_{01}^{-1} \begin{vmatrix} 3 \\ 1 & 0 \end{vmatrix} = \exp[i\left(-\theta(U_{01}, \triangle) + \theta(U_{03}, \triangle) - \theta(U_{02}, \triangle)\right) + \theta(U_{02}, \triangle) + \theta(U_{03}, \triangle) + \theta(U_{03}, \triangle) + \theta(U_{02}, \triangle) + \theta(U_{03}, \triangle) + \theta(U$$

In general, it is sum of the phases  $\; \theta(s,a) \; \; \; \; \; s \in \mathcal{S}, a \in \mathcal{A} \;$ 

$$U(s)|a\rangle = \exp(i\theta(s,a))|a + \partial s\rangle$$

It is convenient to introduce a formal sum of the objects  $E = \bigoplus_{s \in \mathcal{S}, a \in \mathcal{A}} \mathbb{Z} \theta(s,a)$ 

The invariant is formulated as a specific subgroup  $E_{\mathrm{inv}} \subset E$ 

( Let us restrict ourselves to the Abelian fusion group G in this talk. Can be safely generalized to non-Abelian groups. )

Group of invariants:  $E_{\text{inv}} \subset E$ 

The condition for being an invariant: Linear constraints on integer coefficients  $\ \epsilon(s,a)$  of  $\ E=\bigoplus_{s\in\mathcal{S},a\in\mathcal{A}}\mathbb{Z}\theta(s,a)$ 

1. The invariant corresponds to sequence of unitaries, with same initial and final state (Berry phase).

$$\sum_{s \in \mathcal{S}} \epsilon(s, a) - \sum_{s \in \mathcal{S}} \epsilon(s, a - \partial s) = 0, \text{ for any } a \in \mathcal{A}.$$

2. The invariant has to be stable against phase redefinitions of the unitary operators.

$$\sum_{a \in \mathcal{A}} \epsilon(s, a) = 0, \quad \text{for any } s \in \mathcal{S} .$$

3. The invariant has to be stable against perturbations nearby the boundaries of unitary operators.

$$\sum_{\substack{a\in\mathcal{A}\\a|\sigma_j=a_*^{(j)}}}\epsilon(s,a)=0\;,\qquad \sigma_j\in \operatorname{supp}(s) \tag{Stability against perturbations within a j-simplex }\sigma_j\;)$$
 (uses exponentially decaying correlation length = gapped )

The three types of linear constraints together define  $E_{
m inv}\subset E$ 

Trivial invariants from locality:  $E_{\mathrm{id}} \subset E_{\mathrm{inv}}$ 

Some invariants  $e \in E_{\mathrm{inv}}$  correspond to the trivial invariants (identity).

Trivial invariants originate from higher commutator:

$$\langle a| \left[ \left[ \left[ U(s_1), U(s_2) \right], \cdots \right], U(s_n) \right] | a \rangle = 1$$
  $\operatorname{supp}(s_1) \cap \cdots \cap \operatorname{supp}(s_n) = \emptyset$ 

Let  $E_{\mathrm{id}} \subset E_{\mathrm{inv}}$  be the group of higher commutators. Then define generalized statistics as

$$T = E_{\rm inv}/E_{\rm id}$$

Though  $E_{\mathrm{inv}}$  is an infinite group (direct sum of integers), the genuine invariant T is a finite Abelian group.

Invariants are torsions, and quantized.



### Quantization of Generalized statistics

Let's explicitly show that the invariant  $T=E_{
m inv}/E_{
m id}$  is a finite group (torsion).

First, one can show that the equivalence class  $[e] \in E_{inv}/E_{id}$  doesn't depend on initial state, i.e., the ratio

$$\frac{\langle a_0 | \prod U(s_j)^{\pm} | a_0 \rangle}{\langle a_0' | \prod U(s_j)^{\pm} | a_0' \rangle} \in E_{\mathrm{id}} \qquad \text{for any pair of initial states.}$$

In other words, it is equal to product of higher commutators, and actually  $\frac{\langle a_0 | \prod U(s_j)^{\pm} | a_0 \rangle}{\langle a_0' | \prod U(s_i)^{\pm} | a_0' \rangle} = 1$ 

$$\frac{\langle a_0 | \prod U(s_j)^{\pm} | a_0 \rangle}{\langle a_0' | \prod U(s_j)^{\pm} | a_0' \rangle} = 1$$

Then, sum up the phase over all choices of initial states:

$$|\mathcal{A}|[e] = \sum_{a_0 \in \mathcal{A}} \sum_{(s,a)} \epsilon(s,a) \theta(s,a+a_0)$$
 
$$= \sum_{a_0 \in \mathcal{A}} \sum_{(s,a)} \epsilon(s,a-a_0) \theta(s,a) = \sum_{(s,a)} \left(\sum_{a_0 \in \mathcal{A}} \epsilon(s,a_0)\right) \theta(s,a) = 0$$
 [e] has finite order, Showing T is a finite group



## Conjecture: Generalized Statistics = Group Cohomology

Take a triangulation on a sphere embedded in d dimensional space.

p-dimensional excitation ((d-p-1)-form symmetry) with fusion group G.



The invariants can be systematically evaluated on computer using Smith normal form.

Then, computation results imply the correspondence with the group cohomology:

$$T = H^{d+2}(B^{d-p}G, U(1))$$

Verified for small groups G.

For instance, with d = 2, p = 0, G = ZN (anyons),

$$T = \mathbb{Z}_{2N}$$
 even  $N$   
 $T = \mathbb{Z}_N$  odd  $N$ 

Spin quantization rule of anyons; Checked up to N = 10 on laptop.



# **Examples of invariants**

• 1+1D: 0-form ZN symmetry  $Z_3(g):=[U(g)_{01}^{|g|},U(g)_{02}]$  ...  $\overset{1}{\cdot}$   $\overset{0}{\cdot}$   $\overset{2}{\cdot}$  ...

• 2+1D: 0-form ZN x ZN symmetry  $Z_4^I(a,b) := (U(a)_{B+C})^{-N} \Big( U(a)_{B+C} \left[ U(a)_B, \left[ U(a)_A, U(b)_{A+B+C+D} \right] \right] \Big)^N, \\ Z_4^{II}(a,b) := (U(b)_{B+C})^{-N} \Big( U(b)_{B+C} \left[ U(b)_B, \left[ U(b)_A, U(a)_{A+B+C+D} \right] \right] \Big)^N.$ 



• 3+1D: 1-form ZN symmetry

$$\mu_{24} := U_{014} U_{034} U_{023} U_{014}^{-1} U_{024}^{-1} U_{012} U_{023}^{-1} U_{013}^{-1} \\ \times U_{024} U_{014} U_{013} U_{024}^{-1} U_{034}^{-1} U_{023} U_{013}^{-1} U_{012}^{-1} \\ \times U_{034} U_{024} U_{012} U_{034}^{-1} U_{014}^{-1} U_{013} U_{012}^{-1} U_{023}^{-1}$$



"Fermionic loops" for N = 2

### 0-form ZN symmetry

$$Z_5(g) := \left(U(g)_{0234}U(g)_{0124}\right)^{-N} \left(U(g)_{0234}[U(g)_{0134}, U(g)_{0123}^N]^{-1}U(g)_{0124}[U(g)_{0134}, U(g)_{0123}^N]\right)^{N}$$



## Generalized statistics as anomalies: obstruction to gauging

The nontrivial invariant is directly regarded as obstruction to gauging the symmetry.

A take is that the product of unitaries  $\langle a_0|U(s_{n-1})^{\pm}\dots U(s_j)^{\pm}\dots U(s_0)^{\pm}|a_0\rangle$  is the product of Gauss law operators.

$$G(\Delta) = 1, \quad U(s) = \prod_{\Delta \in s} G(\Delta)$$

Gauss law operator on local simplex  $\Delta$ , and the unitary is product of Gauss laws

It means that the invariant obstructs commuting Gauss laws within the initial symmetric state.



Obstruction to gauging the symmetry = Microscopic definition of 't Hooft anomalies

[Else=Nayak, Kawagoe=Levin...]



## Generalized statistics as anomalies: dynamical consequences

Generalized statistics is understood as the 't Hooft anomaly.

Indeed, generalized statistics has a direct dynamical consequence (similar to Lieb-Schultz-Mattis):

[Lieb=Schultz=Mattis, Oshikawa=Hastings,...]

Generalized statistics  $T \neq 1$  on the symmetric state  $|\Psi\rangle$  implies that the state cannot be short-range entangled. (i.e., cannot be connected to tensor product state by finite depth circuit)

For instance, Z2 1-form symmetry in (3+1)D:

$$\mu_{24} := U_{014} U_{034} U_{023} U_{014}^{-1} U_{024}^{-1} U_{012} U_{023}^{-1} U_{013}^{-1} \\ \times U_{024} U_{014} U_{013} U_{024}^{-1} U_{013} U_{013}^{-1} U_{013}^{-1} U_{013}^{-1} \\ \times U_{034} U_{024} U_{012} U_{034}^{-1} U_{013} U_{012}^{-1} U_{023}^{-1} U_{023}^{-1} \\ \times U_{034} U_{024} U_{012} U_{034}^{-1} U_{013} U_{012}^{-1} U_{023}^{-1} U_{023}^{-1} \\ \times U_{034} U_{024} U_{012} U_{034}^{-1} U_{013} U_{012}^{-1} U_{023}^{-1} U_{023}^{-1}$$

Such result has been known for anyons in (2+1)D: T-junction must be trivial on SRE states

[Bravyi=Hastings=Verstraete, Aharanov=Touati, Li=Lee=Yoshidal



Pirsa: 25050024 Page 18/28

## Example: Fermionic loops imply long-range entanglement

Let's consider Z2 1-form symmetry in (3+1)D:

One can show that

$$\mu_{24} := U_{014} U_{034} U_{023} U_{014}^{-1} U_{024}^{-1} U_{012} U_{023}^{-1} U_{013}^{-1} \times U_{024} U_{014} U_{013} U_{024}^{-1} U_{034}^{-1} U_{034} U_{013} U_{012}^{-1} \times U_{034} U_{024} U_{012} U_{034}^{-1} U_{014}^{-1} U_{013} U_{012}^{-1} U_{023}^{-1}$$

becomes trivial on symmetric SRE states.

Let's consider 3d SRE state  $|\psi\rangle\,$  w/ Z2 1-form symmetry.

Then, each state  $U | \psi \rangle$  can be taken to be a trivial product state away from excitations:

$$|\partial s
angle:=U(s)\,|\psi
angle=|a
angle_{\partial s}\otimes|0
angle_{\overline{\partial s}}$$
 (up to finite depth circuit)

One can show that the generalized statistics becomes trivial for such effective 1d state (uses MPS rep of excitations).



Higher-form anomalies: Intrinsic long-range entanglement

For p-form symmetry with  $p \ge 1$ , generalized statistics puts much tighter constraint on entanglement structure.

For symmetric gapped states  $|\Psi
angle$  one can show that

$$U_\Theta \ket{\Psi} = e^{i\Theta} \ket{\Psi}$$
,  $e^{i\Theta} \neq 1$   $\Longrightarrow$   $\langle \Psi | \mathrm{SRE} \rangle = O(L^{-\infty})$  Generalized statistics 
$$\max_{\mathsf{Circuit \ depth} \, < \, \mathsf{O(L)}} \mathsf{[Hsin=RK=Prem, \ Li=Lee=Yoshida]}$$

i.e., if generalized statistics on a symmetric state is nontrivial, overlap of  $\ket{\Psi}$  with any SRE states decays exponentially.

"Intrinsic long-range entanglement"

This constraint is only valid for higher-form symmetry. (0-form anomalies are matched by symmetric cat state)



Pirsa: 25050024 Page 20/28

## Proof of intrinsic long-range entanglement from higher-form anomalies

1. Separate the system into disjoint disks  $R_j$ . Each disk support closed symmetry operators. Higher-form symmetry is a strong symmetry of reduced density matrix  $\rho$ .



2. One can define generalized statistics invariant within each disk  $R_j$ . At each disk, the Schmidt state at  $R_i$  for each ensemble of  $\rho$  is not SRE.





3. The difference between SRE state can be said for each disk, and as a whole leads to exponential decay of overlap:

$$\langle \Psi | \text{SRE} \rangle = O(L^{-\infty})$$

[Hsin=RK=Prem, Li=Lee=Yoshida]

Importance of higher-form symmetry:

- 1. O-form symmetry doesn't generate symmetry at entangling surface
- 2. Even when it does, it is weak symmetry in general (e.g., SSB)



## Higher-form anomalies: Intrinsic mixed state topological order

Intrinsic LRE leads to interesting mixed phases of matter

[Ellison=Cheng, Sohal=Prem, Wang=Wu=Wang, Lessa=Sang=Lu=Hsieh=Wang,...]

Phases can be classified through two-way finite depth local quantum channel between two mixed states

If a mixed state  $\,
ho$  has strong anomalous p-form symmetry w/ nontrivial generalized statistics  $\,U
ho\propto
ho$  ,

$$\mathcal{F}(\rho, \sigma_{\mathrm{SRE}}) = O(L^{-\infty})$$

$$\sigma_{\mathrm{SRE}} = \sum_{j} \alpha_{j} \left| \mathrm{SRE} \right\rangle_{j} \left\langle \mathrm{SRE} \right|_{j}$$

i.e., fidelity between  $\rho$  and any mixed SRE state exponentially decays wrt system size.

Enforced long-range entanglement from higher-form anomalies: protects nontrivial mixed phases of matter



## Intrinsic mixed state topological order in (3+1)D Z2 toric code

For instance, let's consider (3+1)D Z2 toric code. We define it with Z4 qudits for technical purpose:

$$H_{\text{TC}} = -\sum_{e} X_e^2 - \sum_{v} (A_v + A_v^{\dagger}) - \sum_{p} B_p^2$$

(first term condenses m<sup>2</sup>)

[Hsin=RK=Prem]

The toric code has anomalous Z2 1-form symmetry:

$$S_{\mathbf{f}}(\Sigma) = \prod_{e \subset \Sigma} S_e,$$



This symmetry carries nontrivial generalized statistics:

$$\mu_{24} := U_{014} U_{034} U_{023} U_{014}^{-1} U_{024}^{-1} U_{012} U_{023}^{-1} U_{013}^{-1}$$

$$\times U_{024} U_{014} U_{013} U_{024}^{-1} U_{034}^{-1} U_{023} U_{013}^{-1} U_{012}^{-1}$$

$$\times U_{034} U_{024} U_{012} U_{034}^{-1} U_{014}^{-1} U_{013} U_{012}^{-1} U_{023}^{-1}$$

$$= -1$$



( Z4 presentation allows us to write anomalous symmetry in terms of Pauli )



## Intrinsic mixed state topological order in (3+1)D Z2 toric code

For instance, let's consider (3+1)D Z2 toric code. We define it with Z4 gudits for technical purpose:

$$H_{\text{TC}} = -\sum_{e} X_e^2 - \sum_{v} (A_v + A_v^{\dagger}) - \sum_{p} B_p^2$$

(first term condenses m<sup>2</sup>)

[Hsin=RK=Prem]

Let's consider the error channel of (3+1)D Z2 toric code:

$$\mathcal{N} = \prod_{e} \mathcal{N}_{e}, \quad \mathcal{N}_{e}(\rho) = p\rho + (1-p)\tilde{S}_{e}\rho\tilde{S}_{e}^{\dagger}$$



This preserves strong anomalous (emergent) Z2 1-form symmetry generated by:

$$S_{\mathrm{f}}(\Sigma) = \prod_{e \subset \Sigma} S_e,$$



Generalized statistics enforces LRE and intrinsic mixed TO in decohered phase:

Intrinsic LRE in mixed phases

## Intrinsic mixed state topological order in (3+1)D Z2 toric code

For instance, let's consider (3+1)D Z2 toric code. We define it with Z4 qudits for technical purpose:

$$H_{\mathrm{TC}} = -\sum_e X_e^2 - \sum_v (A_v + A_v^\dagger) - \sum_p B_p^2$$
 (first term condenses m²) [Hsin=RK=Prem]

Let's consider the error channel of (3+1)D Z2 toric code:

$$\mathcal{N} = \prod_{e} \mathcal{N}_{e}, \quad \mathcal{N}_{e}(\rho) = p\rho + (1-p)\tilde{S}_{e}\rho\tilde{S}_{e}^{\dagger}$$

Maximally decohered phase has the following property:

- Maximally decohered phase is the nontrivial mixed phase, protected by anomalous 1-form symmetry
- Strong symmetry is a single surface operator generating anomalous Z2 1-form symmetry.
   Forms an algebra (braided fusion 2-category) that violates remote detectability, which cannot be found in pure phases
   (In pure phases, found in boundary of Walker-Wang type model, i.e., 2-form Z2 gauge theory in 4+1 spacetime dim )



Pirsa: 25050024 Page 25/28

# Summary

- Universal microscopic descriptions for statistics of invertible deconfined excitations
- Generalized statistics is quantized, and systematically computed using Smith normal form
- Generalized statistics gives microscopic definition of anomalies, and constrains low-energy spectrum
- Generalized statistics enforces intrinsic long-range entanglement, and leads to new mixed phases of matter

### **Future directions**

- Gapless systems? We assumed gapped system, but hopefully one can formulate invariants w/o reference to states.
- Non-invertible symmetries / non-Abelian anyons? Is there analogue of higher commutators of unitaries?
- Proof for the correspondence between generalized statistics and cohomology?  $T = H^{d+2}(B^{d-p}G, U(1))$
- · Comprehensive understanding of mixed phases using theories without remote detectability?



# Fermionic loops imply long-range entanglement

Each excited state in SRE is the 1d MPS state along excitations.

Let's consider a "patchwork" of MPS:

For instance, 
$$|a\rangle = {
m Tr} \left[ V^0 E^{01} V^1 E^{12} V^2 E^{23} V^3 E^{34} V^4 E^{40} \right]$$



MPS V only depends on excitation configuration near a vertex, and E only depends on those near an edge.

This patchwork representation allows us to construct a canonical choice of excited state |a
angle for generic configuration.

This specific structure of an excited state again greatly constrains the Berry phase  $U(s)|a\rangle = \exp(i\theta(s,a))|a+\partial s\rangle$ 

## Fermionic loops imply long-range entanglement

The symmetry operator also decomposes into circuits near vertex, edge, bulk.



$$U_{jkl} = U_j^{(0)} U_k^{(0)} U_l^{(0)} U_{jk}^{(1)} U_{kl}^{(1)} U_{jl}^{(1)} U_{jkl}^{(2)}$$



Berry phase decomposes into smaller part, and each phase only depends on MPS on specific j-simplex:

$$\theta(U_{jkl}, a) = \theta(U_{j;jkl}^{(0)}, a) + \theta(U_{k;jkl}^{(0)}, a) + \theta(U_{l;jkl}^{(0)}, a) + \theta(U_{jk}^{(1)}, a) + \theta(U_{kl}^{(1)}, a) + \theta(U_{jkl}^{(1)}, a) +$$

Then, invariance under local perturbations at j-simplex enforces the Berry phase on each j-simplex to cancel out.

One can then show  $e \in E_{\mathrm{inv}}$  has trivial invariant on SRE.

