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Abstract:

I will present a unified framework for understanding the statistics and anomalies of excitations—ranging from particles to
higher-dimensional objects—in quantum lattice systems. We introduce a general method to compute the quantized statistics of
Abelian excitations in arbitrary dimensions via Berry phases of locality-preserving symmetry operations, uncovering novel
statistics for membrane excitations. These statistics correspond to quantum anomalies of generalized global symmetries and
imply obstructions to gauging, enforcing long-range entanglement. In particular, we show that anomalous higher-form
symmetries enforce intrinsic long-range entanglement, meaning that fidelity with any SRE states must exhibit exponential
decay, unlike ordinary (0-form) symmetry anomalies. As an application, we identify a new example of (3+1)D mixed-state
topological order with fermionic loop excitations, characterized by a breakdown of remote detectability linked to higher-form
symmetry anomalies.
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Statistics of excitations, and Anomalies

Statistics of quasiparticles (anyons): topological order, spin liquids [Wen, Wang=Senthil,...]

Nontrivial statistics often implies nontrivial low-energy spectrum, as only bosons can condense.

Associated with dynamic consequence of of higher-form symmetries; forbids confined phases

[Gaiotto=Kapustin=Seiberg=Willett,...]

Anomaly and anyon statistics constrain entanglement structure of many-body systems; enforces

[Bravyi=Hastings=Verstraete,
Aharanov=Touati, Li=Lee=Yoshida,...]

Anyons can be non-invertible, but in this talk we are mostly interested in invertible excitations (symmetries).
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Microscopic definition of statistics
Gapped local Hamiltonian system in (2+1)D: How to define statistics of quasiparticles in microscopic lattice models?

T-junction: [Levin=Wen]

expli(~o( . 4) (0, A)=0(tn . 1)

3 3
U02U0_31U01U0_21U03U0_11 A — ¢'© i LS =
1 2 1 4 +6(Uor, )= 6(Uss - o) +0(UVin, A))]

This process indeed does half-braiding of two identical particles:

Ups' Uoy Uns' Uo2

To say it’s an invariant, we further need to check stability against perturbations.
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Microscopic definition of statistics
Gapped local Hamiltonian system in (2+1)D: How to define statistics of quasiparticles in microscopic lattice models?

T-junction: [Levin=Wen]
3 3 .
‘ exp[‘i(—& Uy, 5 /o) +6(Uos, A — 09Uy, , ;;;:'Il;.\._‘ §
UonUga Uon U UosUi* |/ \ ) =e®| /.\ ) = o 2+ 0 )00 2
L i L E +6(Uo, )= 6(Uss - o) +0(UVin, A))] e

v" Invariant under choices of unitary by phases, initial excitation configurations

v' Invariant under perturbations nearby the ends of unitaries

Question: Spins of Abelian anyons should be quantized. Is this T junction a invariant?  (cf. Vafa’s theorem)
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Quantization of T-junction

T junctionis a qua invariant. Let’s see this explicitly for Abelian anyons with Z2 fusion rule.  [RK=Li=Xue=Hsin=Chen]

3 ’ .
oxp[i(—ﬂ Ugy > ) +0(Uos, A)—6(Ups» /ov 3
U{)QUO_:SIU(H U0—21 U03U0_11 i i = ( ) ( ) ( ) ///\\\
L 2 +9(U01, A)_ 9(U03 ) ‘;) +9(U02, A))] 1e .2

Let’s say each unitary is

Key observation is that the triple commutator of operators with no common overlap must vanish:

For instance,

g (ana A) 0 (Uoz, A) + 0 (Uo_?,la A)
(A0, Ul U0l | Ay =1 = +0(a A)+0(Un A) 0 (U, A))
+6 (ngl, A) +6 (U‘;;, A) — 0 (mod 27)
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Quantization of T-junction

( ) for Z2 Abelian anyons is the combination of triple commutators:

expl4i (B(Uml, A) +6(Uos, A\) +0(Us A) = ([[Uo2, Uos], Ur2]} x {[[Uo1, Uoz2), U1s]} x {[[Uos, Uo1], Ua3])
+9(Uﬂla A) +9(U0_31= A) +5(U02= A))] X ([Ugz", Ugs'), Ur2]) x {[[Ug1", Uga'l, Uns)) X {[[Ugz", Ugy'], Uss))
X ([[an,UozzLUz:z])2 X <HUO2:U01]7U12]>2X (HUm,Uos],Ula])2

=¥

This shows that the spin of Z2 Abelian anyons through T-junction must be as 0, 1/4, 1/2, 3/4.

We will see that such mechanism for quantization is observed in a very general setup.
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Quantization of T-junction

T junctionis a qua invariant. Let’s see this explicitly for Abelian anyons with Z2 fusion rule.  [RK=Li=Xue=Hsin=Chen]

3 ’ .
oxp[i(—ﬂ Ugy > ) +0(Uos, A)—6(Ups ., [ov 3
U{)QUO_:SIU(H U0—21 U03U0_11 i i = ( ) ( ) ( ) ///\\\
L 2 +9(U01, A)_ 9(U03 ) ‘;) +9(U02, A))] 1e .2

Let’s say each unitary is

Key observation is that the triple commutator of operators with no common overlap must vanish:

For instance,

g (ana A) 0 (Uoz, A) + 0 (Uo_?,la A)
(A0, Ul U0l | Ay =1 = +0(a A)+0(Un A) 0 (U, A))
+6 (ngl, A) +6 (U‘;;, A) — 0 (mod 27)
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Generalized statistics

Such invariants can be defined in generic space dimensions, with generic invertible extended excitations.

L —17r—1 -
Hoq = U014U034U023U014U024U012U023U013

Example: Z2 1-form symmetry in (3+1)D. 24 step unitaries:

i ey
X Un24U014U013U94 U341 U023U513Ug15

—1757—1 —157r—1
XUp34U024U012U34Ug12U013U 12U 0503

o | -1 -1 71 T
4 Logg [’012 Um:} LUM {034 buw Ui_m < Uu;;.t

N AN AN AN AN AN AN AT
wa ‘-.\/ \\/, ..,\\.,3/ // \\/ Vi N/

1
[{121 UTJ]J ["Tll-'l ["TU')fl

Yo AN L‘ /\\U_‘J? Vas A= AN \_/\ﬁ
% <Xy NV NV NV NNV Y TV
015 UU bm! FU)ﬁ UM (/0"3 A UUJ-L ) Uou
\% /\\—) \ H \ /\ \ —) \ —)/ / \ —— I".I‘I —
AW \ \‘\/ |

We will give the general framework for such invariants, and discuss physical consequences.
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“Fermionic loops”

[Thorngren, Chen=Hsin,
Fidkowski=Haah=Hastings,
RK=Li=Xue=Hsin=Chen]
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Framework for Generalized statistics

Setup: + Gapped local lattice system, with tensor product Hilbert space

* Finite invertible p-form symmetry with fusion group G, generated by a

(G can be non-abelian w/ p = 0)

End of symmetry operators correspond to the extended excitations.

Input: » Possible configurations of excitations A (on a simplicial complex embedded in space): finite group
* Set of S : symmetry generators creating excitation configurations
Example... T junction
p j \ A=G?
« A :G(=ZN)anyon configurations on \ (anyons on four vertices

fuse to vacuum)

« S :setof anyon string operators on edges. Six generators of G® (#ofedges) 0: S — A
0/ aA®e
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Framework for Generalized statistics

Invariant is a sequence of unitaries acting on a state, getting back to the original one

B 3 § 3 exp[i(@(Um ! ‘L) +9(U03, A) — \E)(UD2 : l) 3
Uo2Upz Uo1Ugy UosUy, 1A2 = Az
+ Q(Um, A) — 9(U03 3 ‘l\) + G(Uoz-. A)) ] L

In general, it is sum of the phases (s, a) seS,ac A

Ul(s)|a) = exp(if(s,a)) |a + Os)

It is convenient to introduce a formal sum of the objects E = @ Z0(s,a)
sES,acA

The invariant is formulated as a specific subgroup FEj,, C E

( Let us restrict ourselves to the fusion group G in this talk. Can be safely generalized to non-Abelian groups. )
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Group of invariants: FEi,, C F

The condition for being an invariant: Linear constraints on integer coefficients €(s,a) of F = GB Z0(s,a)
s€S.,acA

1. The invariant corresponds to sequence of unitaries, with same initial and final state (Berry phase).

Ze(s,a.)—Ze(s,a—ﬁs) =0, foranyacA.

SES SES
2. The invariant has to be stable against of the unitary operators.
Z €(s,a) =0, foranyscS.
acA
3. The invariant has to be stable against nearby the boundaries of unitary operators.

( Stability against perturbations within a j-simplex 0 )

Z €(s,a) =0, 0j €supp(s)

aEA( ) ( uses exponentially decaying correlation length = gapped )
O —a
W] *

The three types of linear constraints together define Finv C F
/A0
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Trivial invariants from locality: FEiq C Finy

Some invariants € € Fj,, correspond to the trivial invariants (identity).

Trivial invariants originate from

(al [[[U(51),U(s2)],- -1, U(sp)] la) =1 supp(s1) N---Nsupp(s,) = 2

Let Fiq C Finv be the group of higher commutators. Then define generalized statistics as

I — Einv/Eid

Though Ei,y isan infinite group (direct sum of integers), the genuine invariant T is a finite Abelian group.

Invariants are torsions, and

/A0 0O
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Quantization of Generalized statistics

Let’s explicitly show that the invariant T = FEi,,/Fiq is a finite group (torsion).

First, one can show that the equivalence class le] € Einv/Eid doesn’t depend on initial state, i.e., the ratio

(aol TTU (s;) |ao)
(apl TTU (s5)* |ag)

e Fig for any pair of initial states.

(a0l TTU(s5)* |ao)

In other words, it is equal to product of , and actually =1

(aol TTU (85)* lag)

Then, sum up the phase over all choices of initial states:

[Alle] = > > e(s,0)0(s,a + ap)

a0€A (s,a) [e] has finite order,
=2 D cls,a—ao)f(s,a) = > ( > 6(5:G0)> 0(s,a) =0 Showing T is a
ancA (s,a) (s,a) \apeA
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Conjecture: Generalized Statistics = Group Cohomology

Take a triangulation on a sphere embedded in d dimensional space.

p-dimensional excitation ((d-p-1)-form symmetry) with fusion group G.

The invariants can be systematically evaluated on computer using

Then, computation results imply the correspondence with the

G-particles with G =[], Zn,

G-loops with G =T], Zn,

G-membranes with G =[], Zx,

(1+1)D

H*BG,U(1))
=IL2n ILic; Zviony)
nq-.:-; i<k LN, N, Ny}

(2+1)D

HYB*¢.U(1)
=1L Zwv, 2ysewv; [licy Zone,vg)

mY(BG,U(1))
= ch-_j Zf.-\-,‘.-\‘,J I j<ie Zl(z.-v;.:\.‘_,-__.-vk )

H;:: j<k<l! Z’(M N Ni N

(3+1)D

HS(BEC-‘, 1))
= l'L ZrN, \2)

H°(B%G,U(1))
=1L Zw, 2y [Lic; Zows g

H*(BG.U(1))

ey H; Z-'Va He(.-_j Z-(ZN,‘.\-'J_]
]_L.m-,\k Z?ﬁg.ﬁ;,:\-‘,,)
Hh'_j <kl Z:rj.-\g WV NN

T icicnciom Z(N, Ny Ny Ny Now)

For instance, withd =2, p=0, G=ZN (anyons), T = Zon
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Verified for
small groups G.

even N Spin quantization rule of anyons;
odd N Checked up to N = 10 on laptop.
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Examples of invariants

« 1+1D: 0-form ZN symmetry  Z(q) := [U()¥], U (g)02] . 2

N

e 2+1D: O-form ZN x ZN symmetry 71 (a,b) = (U(Q)MC)fN(U(a)MC [U(Q)B,[U(Q)A:U(bmmcm”) ’

2 (a,6) = UB)s40) ™ (U®)ssc [U®)s, [U(0)1,U@)arnrosn]])

* 3+1D: 1-form ZN symmetry

e N N AT A AT ASTATAS
p2a = Up14U034U023U514Uo24U012U523Uo13 ©<\ U <]

—177-1 —177-—1 A P PV L PN PN PN
><U024U014U013U024U034U023U013U012 Q} ~;5 < ‘Y\ b \/ ¥4 —7 %
S e —1l77—1
><U034Uf>24U012U034U014U013UL)12U023

“Fermionic loops” for N =2

O-form ZN symmetry

Zs5(9) == (U(9)0231U(g)o124) ™™ (U(9)0234[U(9)0134: U(9)0123] U (9)0124[U (9)0134, U(g)é\;%])N

/A0 0
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Generalized statistics as anomalies: obstruction to gauging

The nontrivial invariant is directly regarded as the symmetry.

A take is that the product of unitaries (ao| U(s, 1)% ... U(s;)* ... U(so)T |ag) is the product of

G(A)=1, U(s)=]] Ga)
Gauss law operator on local simplex A, and the unitary is product of Gauss laws
It means that the invariant obstructs commuting Gauss laws within the initial symmetric state.

I::> Obstruction to gauging the symmetry = Microscopic definition of ‘t Hooft anomalies [Else=Nayak,
Kawagoe=Levin...]
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Generalized statistics as anomalies: dynamical consequences

Generalized statistics is understood as the ‘'t Hooft anomaly.
[Lieb=Schultz=Mattis,

Indeed, generalized statistics has a direct (similar to Lieb-Schultz-Mattis): Oshikawa=Hastings,...]

Generalized statistics 7' 7 1 on the symmetric state | V) implies that the state cannot be

(i.e., cannot be connected to tensor product state by finite depth circuit)

For instance, Z2 1-form symmetry in (3+1)D:

/\ /\ /\ /\ > & %r Haq 1= U014U034U022U014U024U012U023U0_13

1
X U024U014U013U024U034U033.U013 U012

% ¥ \\_’ b— _' ‘_7 %_, x Un34U024U012U34Up11U013U515Upoh
. Un U
TN N A S NS AN
[Bravyi=Hastings=Verstraete,

Such result has been known for anyons in (2+1)D:  T-junction must be trivial on SRE states
Aharanov=Touati, Li=Lee=Yoshida]

—1] > LRE state
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Example: Fermionic loops imply long-range entanglement

Let’s consider Z2 1-form symmetry in (3+1)D:

—1lrr-1 —1lrr—-1
24 := U014U034U023U513Ug04 Uo12Ug23Ug13
One can show that x Uo24U014U013U 24 Uga i Uo23Ug15Unns becomes trivial on

—1y7—1 —157-1
X U034U024U012U034U014U013U012 Uozs

Let’s consider 3d SRE state \?,/)) w/ Z2 1-form symmetry.

Then, each state U |1/) can be taken to be a trivial product state away from excitations:

0s) := U(s) |¥) = |a)s, ® |05 (up to finite depth circuit)

One can show that the generalized statistics becomes trivial for such (uses MPS rep of excitations).
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Higher-form anomalies: Intrinsic long-range entanglement

For p-form symmetry with p >= 1, generalized statistics puts much tighter constraint on

For symmetric gapped states | ) one can show that

Uo |U) =e®|T), ®£1 [=> (PISRE)= O(L™™)

Generalized statistics
[Hsin=RK=Prem, Li=Lee=Yoshida]

i.e., if generalized statistics on a symmetric state is nontrivial, overlap of |¥) with states decays exponentially.

" »n

This constraint is only valid for higher-form symmetry. (0-form anomalies are matched by symmetric cat state)

/A0 O

Pirsa: 25050024 Page 20/28



Proof of intrinsic long-range entanglement from higher-form anomalies

1. Separate the system into disjoint disks R;. Each disk support closed symmetry operators.

Higher-form symmetry is a of reduced density matrix p. i Q

2. One can define generalized statistics invariant within each disk R;.

At each disk, the Schmidt state at R; for each ensemble of p is not SRE.

3. The difference between SRE state can be said for each disk, and as a whole leads to exponential decay of overlap:

(U|SRE) = O(L~>)

[Hsin=RK=Prem, Li=Lee=Yoshida]

Importance of symmetry: 1. O-form symmetry doesn’t generate symmetry at entangling surface
2. Even when it does, it is weak symmetry in general (e.g., SSB)
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Higher-form anomalies: Intrinsic mixed state topological order

o . . [Ellison=Cheng, Sohal=Prem, Wang=Wu=Wang,
Intrinsic LRE leads to interesting Lessa=Sang=Lu=Hsieh=Wang,...]

Phases can be classified through two-way finite depth local quantum channel between two mixed states

If a mixed state p has strong anomalous p-form symmetry w/ nontrivial generalized statistics U p o< p,
— o0
F(p,osrg) = O(L™%)

OSRE — Z 5 ‘SRE)h?- <SRE|j
J

i.e., fidelity between p and any state exponentially decays wrt system size.
Enforced long-range entanglement from higher-form anomalies: protects nontrivial

/A0 O
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Intrinsic mixed state topological order in (3+1)D Z2 toric code

For instance, let’s consider (3+1)D Z2 toric code. We define it with Z4 qudits for technical purpose:

Hrpe = — E X2 - E (Ay + A}) — E B2 (first term condenses m?) [Hsin=Rk=Prem]
e v P
The toric code has Z2 1-form symmetry: & z 72 4
A Z
Z 7 . SE
Se(%) =[] S, Y7 e
eCX
This symmetry carries nontrivial generalized statistics:
oz
4
p2a == Uo14Uo34U023U413U521U012UoasUo1s ; S| T,
xUo24Up1aU013Uga Ui U023Us13Ug1s. - = —1 s Se
2
xU034U024U012U[£3}1U[;1}1UU]3U[E]QUOE}}
o1
( Z4 presentation allows us to write anomalous symmetry in terms of Pauli )
/A9 O
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Intrinsic mixed state topological order in (3+1)D Z2 toric code

For instance, let’s consider (3+1)D Z2 toric code. We define it with Z4 qudits for technical purpose:

Hpe = — Z X2 - Z(A@ + Al) — Z B2 (first term condenses m?) [Hsin=RK=Prem]
€ p

v

Let’s consider the error channel of (3+1)D Z2 toric code:

N =][Ne: Nelp) =pp+ (1 —p)SepS!

This preserves strong (emergent) Z2 1-form symmetry generated by: v

5i(®) = [ S |

eCX X

Generalized statistics enforces LRE and intrinsic mixed TO in decohered phase:

Q%Qf/\;ﬁfﬁ;V‘l\—iﬂf M24 1= U014U034U023U(ﬁﬁUo_g};Uong_géU(ﬁé

JARD N B YG % Uo2aU1aUn3Up21Ugza Uo2aUpi3Ups = —1 :>
AV/\/ /\.‘Q < \ w \> X Un34Up24U012 U@;Uﬁ}lUmgUﬁﬁU&E
0/A®0
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Intrinsic mixed state topological order in (3+1)D Z2 toric code

For instance, let’s consider (3+1)D Z2 toric code. We define it with Z4 qudits for technical purpose:

Hpe = — Z X2 - Z(A@ + Al) — Z B2 (first term condenses m?) [Hsin=RK=Prem]
€ p

v

Let’s consider the error channel of (3+1)D Z2 toric code:
N =]]Ne, Nelp) =pp+ (1 —p)SepS]
[

Maximally decohered phase has the following property:

* Maximally decohered phase is the , protected by anomalous 1-form symmetry
* Strong symmetry is a generating anomalous Z2 1-form symmetry.
Forms an algebra (braided fusion 2-category) that violates , which cannot be found in pure phases

( In pure phases, found in boundary of Walker-Wang type model, i.e., 2-form Z2 gauge theory in 4+1 spacetime dim )
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Summary

» Universal microscopic descriptions for statistics of invertible deconfined excitations

* Generalized statistics is , and systematically computed using Smith normal form

* Generalized statistics gives microscopic definition of anomalies, and constrains low-energy spectrum

* Generalized statistics enforces , and leads to

Future directions

* Gapless systems? We assumed gapped system, but hopefully one can formulate invariants w/o reference to states.

* Non-invertible symmetries / non-Abelian anyons? Is there analogue of higher commutators of unitaries?
*  Proof for the correspondence between generalized statistics and cohomology?  7'= H2(BT?G,U(1))

* Comprehensive understanding of mixed phases using theories without remote detectability?
/290
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Fermionic loops imply long-range entanglement

Each excited state in SRE is the 1d MPS state along excitations.

Let’s consider a “patchwork” of MPS:

For instance, ‘CL) — Ty {VOEO] V]512v2E23v3E34v4E40] 7

MPS V only depends on excitation configuration near a vertex, and E only depends on those near an edge.

This patchwork representation allows us to construct a canonical choice of excited state \a) for generic configuration.

This specific structure of an excited state again greatly constrains the Berry phase U(s) |a) = exp(if(s,a)) |a + Os)

/A0 0
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Fermionic loops imply long-range entanglement

The symmetry operator also decomposes into circuits near vertex, edge, bulk.

0 0 0 1 1 1 2
O R

U(So(a0))

U(S1(01))

Berry phase decomposes into smaller part, and each phase only depends on MPS on specific j-simplex:

O(Usnt, @) = G(U;%)M, a) + Q(U,gf?m, a) + 9(Ul(33d, a) + Q(Uﬁ), a) + 00U, a) + e(Uj@;) La) + Q(Uj?gg, a)

Then, invariance under local perturbations at j-simplex enforces the Berry phase on each j-simplex to cancel out.

One can then show e € E;,, has trivial invariant on SRE.
/A9 O
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