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Abstract

How do chemical reactions change when they’re run at temperatures a billion times colder than a Canadian winter? What can
we learn when we have perfect quantum control of the reactants? Before answering these questions, we’ll discuss the
fascinating techniques of laser cooling that allow us to cool atoms and molecules to within a few billionths of a degree above
absolute zero. We’'ll then look at how molecules prepared at such temperatures allow us to control chemical reactions at the
quantum level, beginning to open a new understanding of chemistry and new possibilities for technologies of the future.

About the Speaker

Dr. Alan Jamison is an Assistant Professor at the University of Waterloo, jointly appointed to the Department of Physics and
Astronomy and the Institute for Quantum Computing (IQC). He leads the Jamison Lab, which investigates ultracold atoms and
molecules to explore quantum many-body physics, quantum chemistry, and quantum information science. Dr. Jamison earned
his B.S. in Mathematics from the University of Central Florida in 2007, followed by an M.S. and Ph.D. in Physics from the
University of Washington in 2008 and 2014, respectively.

After completing his Ph.D., he joined the group of Nobel Laureate Wolfgang Ketterle at the Massachusetts Institute of
Technology (MIT) as a postdoctoral researcher. At the University of Waterloo, Dr. Jamison's research centers on using ultracold
atoms and molecules to investigate complex quantum systems. His lab aims to achieve precise control over chemical reactions
at ultracold temperatures, providing insights into quantum chemistry and enabling advancements in quantum computing and
simulation.
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QUANTUM CHEMISTRY IN THE
UNIVERSE'S COLDEST TEST TUBE
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ALAN JAMISON
INSTITUTE FOR QUANTUM COMPUTING AND PHYSICS & ASTRONOMY DEPARTMENT
UNIVERSITY OF WATERLOO
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Quark gluon plasma
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Sun’s core

Surface of the Sun
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COLD ATOMS WITH HOT LASERS
| IS

From IPG Photonics
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COOLING TO NANOKELVINS:
THREE BIG IDEAS

1. Resonance




Resonances
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SLOWING WITH LIGHT




SLOWING WITH LIGHT




COOLING TO NANOKELVINS:
THREE BIG IDEAS

1. Resonance
2. Doppler vs Zeeman




DOPPLER SHIFTS
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CONTROL WITH DOPPLER SHIFTS

1400
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CONTROL WITH DOPPLER SHIFTS

1400
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COMPENSATE WITH ZEEMAN SHIFTS




COMPENSATE WITH ZEEMAN SHIFTS




COMPENSATE WITH ZEEMAN SHIFTS
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COMPENSATE WITH ZEEMAN SHIFTS




COMPENSATE WITH ZEEMAN SHIFTS
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COMPENSATE WITH ZEEMAN SHIFTS




COMPENSATE WITH ZEEMAN SHIFTS




COOLING TO NANOKELVINS:
THREE BIG IDEAS

Resonance
Doppler vs Zeeman
et the hot atoms out




EVAPORATIVE COOLING




THEORY IN PRACTICE
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COOLING TO NANOKELVINS:
THREE BIG IDEAS

Resonance
Doppler vs Zeeman
et the hot atoms out




ON WITH THE CHEMISTRY!!




ON WITH THE CHEMISTRY!!
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A PHYSICIST'S PICTURE OF CHEMISTRY
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SCATTERING CHEMISTRY

Reactants
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SCATTERING CHEMISTRY

Reactants
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THE THREE-BODY PROBLEM

T=1000K

From J.F.E. Croft and J. Bohn
PRA 89, 012714 (2014)
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ATOM-MOLECULE COLLISIONS
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ATOM-MOLECULE COLLISIONS

Ground State Molecule Numbers as functions of Time
in 1596nm Lattice with Na Atoms
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Ground State Molecule Numbers as functions of Time
in 1596nm Lattice with Na Atoms
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ATOM-MOLECULE COLLISIONS

Ground State Molecule Numbers as functions of Time
in 1596nm Lattice with and Without Na atoms
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ATOM-MOLECULE COLLISIONS

Ground State Molecule Numbers as functions of Time
in 1596nm Lattice with and Without Na atoms
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SPIN DEPENDENT REACTIONS
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Spln polarlzed Catalyst

From Liang et al., Nature Communications 13, 3356 (2022)
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CHEMICAL RESONANCES

* NALI + NA RESONANCES
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Control of reactive collisions by
quantum interference

Science 375, 1006 (2022)

H Son, JJ Park, YK Lu, AO Jamison, T
Karman, W Ketterle
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A FABRY-PEROT MODEL
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A FABRY-PEROT MODEL
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CHEMICAL RESONANCES

* NALI + NA RESONANCES
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Control of reactive collisions by
quantum interference

Science 375, 1006 (2022)

H Son, JJ Park, YK Lu, AO Jamison, T
Karman, W Ketterle
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CHEMICAL RESONANCES

* NALI + NA RESONANCES

(1/s)

o
—
]
p -
19}
wn
o
-

Control of reactive collisions by
quantum interference

Science 375, 1006 (2022)

H Son, JJ Park, YK Lu, AO Jamison, T
Karman, W Ketterle
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CHEMICAL RESONANCES

* NALI + NA RESONANCES

Control of reactive collisions by
quantum interference

Science 375, 1006 (2022)

H Son, JJ Park, YK Lu, AO Jamison, T
Karman, W Ketterle
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Normalized NaLi number
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* NALI + NA RESONANCES
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QUANTUM @ WATERLOO

e CLASSICAL SIMULATIONS OF CHEMICAL COLLISIONS

3D Trajectories of Atoms
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QUANTUM @ WATERLOO

e CLASSICAL SIMULATIONS OF CHEMICAL COLLISIONS

3D Trajectories of Atoms
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QUANTUM @ WATERLOO

e CLASSICAL SIMULATIONS OF CHEMICAL COLLISIONS

3D Trajectories of Atoms
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...AND SOMETIMES I’'M AN ECONOMIST
(SORT OF)




MODELING HUMANS WITH STATISTICAL MECHANICS

« “AGENTS"” FOLLOW SIMPLE RULES

e EMERGENT BEHAVIOR IN LARGE GROUPS
* E.G., SEGREGATION IN HOUSING

irsa: 25050015 Page 55/56




[2,1, 2]
th = 0.6, block=True, d=77n

[2,2, 2]
th = 0.6, block=True, d=77n
ol 7 T

100 7R 100

80 #
60
40

20

0 20 40 60 80 100

[0, 1, 2]
th = 0.6, block=True, d=77mr

100 100
80 H 80
60 gt 60
40 40
20 20

0 0

Pirsa: 25050015 Page 56/56



