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Abstract:

Recent work by Davide Gaiotto and collaborators introduced a new type of parametric Feynman integrals to compute BRST
anomalies in topological and holomorphic quantum field theories. The integrand of these integrals is a certain differential form in
Schwinger parameters. In a new article together with Simone Hu, we showed that this "topological" differential form coincides
with a "Pfaffian" differential form that had been used by Brown, Panzer, and Hu, to compute cohomology of the odd graph
complex and of the linear group. In my talk, | will review some aspects of the graph complex and the role played by the Pfaffian
form there, sketch the proof of equivalence, and comment on various observations on either side of the equivalence and their
natural counterparts on the other side.
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Introduction
OXFORD

Mathematical
Institute

Theorem (PHB and Hu 2025). The topological form is the Pfaffian form,

ac = ¢ (up to constants).

1. What is the topological form ag? What does it compute in topological QFT?
~ interlude about graph matrices ~

2. What is the Pfaffian form ¢¢? How is it used in the odd graph complex?

3. What can we learn from them being equal?

(I will not present details of the proof for ag = ¢¢)
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TQFT Propagator P,(X)
OXFORD
Mathematical

» Consider n-dimensional topological QFT, position space X = (x(1), ... x(")T with field
differential operator = de Rham operator

d = dx(l)ax(l) ] dx(z)ax(z; +... 4+ dx(”)ax(n).

» Propagator is Green function of d, defined by dP,(X) = ??ﬂg) 0"(X) dxy A ... A dx,. Itis
2

o e SO0 B 1
’ a ‘)?‘n - )? n .

x|

» , is the projective n-dimensional volume form (= infinitesimal surface element in
spherical coordinates). In particular

X x@ dxM — xM) 4% r2sin? pde + r? cos? ¢ do
P; = — = sgn(x), P, = = =

()2 n (2)2 2 do.
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Parametric representation of the TQFT propagator P,(x)

OXFORD

» Recall integral representation of Euler gamma function, g sl
1 1 /OO 1 =2 :
0 — n e 2 da.
<" T T(3) Jo aFt?
(notice: often “Schwinger trick” done with t = 1. Here, UV limit is a — 0)
» For each component xU) introduce sY) = XT Then, dsV) = &39 — 2—; da [Gaiotto, Kulp,
az az
and Wu 2024; Budzik et al. 2023]. Wedge product:
dxW A Adx?  danQ
dsM AL A dst? = ; + m—
a2 2g7°t1
» If one integrates a, first term vanishes, and
= (3 2 T(3)
e F dsWA.. AdstW =20 20 = 227p (%
-/0 2 (#*)2 2 (%)
|

)2 3)2
» Notice that the integrand factorizes: e ds(l) Aes” ds@ A es? ds® AL
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Brackets

» Use BRST formalism: BRST differential @ such that gauge-invariant “physical” rothetnatien
observables A are 0" cohomology group. That is,

RA=0 and #B: A= QB.

» A classically gauge invariant observable might violate gauge invariance at quantum level
(“anomaly”). Work in perturbation theory, let O; be local operators. Define bracket
[Gaiotto, Kulp, and Wu 2024]

{Olj...,Ok}Z—Q(/ Ol(ﬁk)
RA(k—1)

» The integral is a sum over Feynman integrals with k vertices in the n-dimensional TQFT,

: 1
{01302«_---} = Z m lg H Hﬂf‘?i.v-
A

Graphs G veVe 4

—

symmetry factor t/— External leg structure

Feynman integral
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The topological form
OXFORD

Mathematical
Institute

» Recall that parametric integrand factorizes along dimension = consider 1-dimensional
integrand avg. Schwinger parameter a. for each edge. Start/end coordinates x € .
Then I = [ ag A ag A ... with the topological form (differential form of degree )

e — Xe

NER

S dse where s, :=

{‘V I '1 eEEG

» Key results of [Balduf and Gaiotto 2024]:

1 a T\Tp— ¢
ag = — oy, det(I[T]) | Do wg ™yt A dar,

e e
w24 () 2 T spanning TES FELT

tree W
ac Nag =0 for all graph (Kontsevich Formality theorem).

Here T is the edge-vertex incidence matrix, 1g is the Symanzik polynomial, 1) are
edge-induced Dodgson polynomials (all of these can be produced easily with a computer).
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Graph matrices 1: Incidence matrix and Laplacian

[

Always assume that the graph G is connected. Edge set E, vertex set V.

Mathematical
Institute

|E| x (|V| — 1) incidence matrix T has entry T, , = +1 if edge e ends at vertex v, and —1

if e starts at v, and O else. Column of one vertex v, left out.
|E| x |E| edge variable matrix D = diag (ay, ..., a‘g|) contains Schwinger parameters.

(|V] —1) x (|V| —1) vertex Laplacian
-

First Symanzik polynomial

'z,-b(;::detﬂl-det]]):detl-Hae: Z Hae

ecE T spanning e¢ T

is homogeneous of degree ¢ in the variables a..

Paul-H. Balduf, Mathematical Institute, Oxford Topological Feynman integrals and the odd graph complex

Pirsa: 25050009

Page 8/35



Example: The dunce’s cap

OXFORD

With these choices: Mathematica
Du.nces cap’ G is a graph‘on 3 {1 22 0 0 0
vertices and 4 edges, with ¢ = 2
L -1 0 0 a 0 0
loops. Labels and directions are I = : D=
chosen as: o =l 9 5 9
' 0 -1 0 0 0 a4
This gives the Laplacian I. = ITDDT:
r
d1 a2 1 1 1
L= (al+132 1 _15 1)-
o a1 a1 + 53 + a4
V2 V3
as Symanzik polynomial:
We further choose v3 =: v, as the Ve = detT. - H 3¢ = a3as + a1(az + as) + ax(as + aa).
vertex to remove from X. ccE
Remaining: |V| =2, |E| = 4.
Tisdx2and D is 4 x 4. (Notice matrix tree theorem: The terms of 1) are the

complements of spanning trees, 1) = > 7 [[.o7 ae).

Paul-H. Balduf, Mathematical Institute, Oxford Topological Feynman integrals and the odd graph complex
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Topological differential form for the dunce’'s cap o

Mathematical
Institute

= 1 Z det (H[T]) Z ,U"_,g(ﬁ).ﬂ(ﬁ) g /\ da.

g — ) 7

71_%46 (;)1 . 'U»’Gz T spanning c€G+ fe&T
tree
G has five spanning trees T. For example, consider T = {2,4}.
-1 0
Then E\N T ={fi,h} ={1,3} and I[T] = ( 0 _1) and
=k an
Y13 = —a,4 (I didn't introduce how to compute this).
One obtains the contribution
V2 V3
1
¥4 (+1) - (—2a4)da; A das.
1671’(8183 + aza3 + a1asa + azas + 8334)3/2
End result: "
—as(day A das + dapx A daz) + az(dai A das + dax A das) — (a1 + a2)daz A dag
ag = :
. 8m(a1as + anas + ayaq + axag + azay)3/?

Topological Feynman integrals and the odd graph complex
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Graph matrices 2: Cycle incidence matrix

OXFORD

Mathematical
Institute

» A circuit is a closed path of edges (regardless of edge directions). May visit vertex, but
not edge, multiple times.

» Circuits can be added and subtracted, form a vector space over Z (mod +2). Cycle space,
dimension: |E| — |V|+ 1 =/ is loop number.

» A choice of basis for cycle space determines a cycle incidence matrix C: Entry C. . = +1 if
edge e is in cycle ¢ in positive direction, —1 if in negative direction.

» Analogously, vertex incidence matrix I represents a choice of basis in cut space.

<
» The spaces, and hence the matrices C and T are orthogonal,
ITC = Ogv|-1)xe, CTT = Dpx(jv|-1)-

Paul-H. Balduf, Mathematical Institute, Oxford Topological Feynman integrals and the odd graph complex
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Example: Cycles in the dunce’s cap

Mathematical
With C; and (3 as drawn, =S
Gy ={+a1,+ax,—as} and G = {—a3, +as}.
1 0 1 -1
1 0 -1 0
dl dan — -
£= 1 _1]- recall I = 0 _1
@ 0 1 0 =1
V2 V3
a4 Columns of C are basis vectors in cycle space, columns
£ = 2= 2 linegrly indepeneiont (()lfut]l :rzc:aZde:CZiSS'”af:taf:?;;-]o onal, i.e
circuits to be chosen as basis of P y P & T "
cycle space. This choice is not 1 -1
unique. - -
o7 — 1 1 1 0 1 0 _ 0 O |
0 0 -1 1 0 -1 0 0
0 -1

Paul-H. Balduf, Mathematical Institute, Oxford
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Graph matrices 3: Cycle Laplacian

Mathematical
Institute

» Recall the vertex Laplacian . :=TTD ', isa (| V| — 1) x (|V| — 1) sym. matrix.
» Analogously cycle Laplacian is the ¢ x { symmetric matrix A := CTIDC.

» Determinant is detA = 1) (regardless of the choice of C). Hence, A is invertible.

G, = {+a1,+ax,—as} and G = {—a3, +as}.

1 0
C— 1 0 A_(31+82+33 a3 )
a 2 -1 —-11° as az + ag
0 1
v2v3 Inverse matrix denominator is Symanzik polynomial
a4 det A = g,
f\il _ 717" [33+34 —as
?{f;G \ —33 di + =h) ‘|‘ 33 .

Topological Feynman integrals and the odd graph complex
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Graph matrices 4: Path matrices

Mathematical
Institute

» A path matrix P is a |E| x (|V| — 1)-matrix where column j is a directed path of edges
from v, to v;.

» P has the same shape as T, but they are distinct. In fact, PTT = 1(jv|—1)x(v|-1)-

» One can show that det (C|P) € {+1,—1}. This determinant encodes a (relative) sign
ambiguity that arises from the choice of cycle basis in C [Conant and Vogtmann 2003].

Let Ve, = V3 and paths Pl = {31,—83} and P2 = {—84} ’

N 1 0 1 0 1 -1
1 0 0 0 -1 0
d] dn L= -1 -1l P = 1 0 ? I = 0 —1
0 1 0 —l 0 -1
Vo V3 = Vy
ay The concatenation (C|P) has full rank and det (C | P) = +1.

One also checks that PTI = 15».
It is coincidence that all matrices have the same shape.

Paul-H. Balduf, Mathematical Institute, Oxford Topological Feynman integrals and the odd graph complex
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Pfaffians e

OXFORD

Mathematical
Institute

» Let M be a 2n x 2n skew-symmetric matrix. The Pfaffian is

1
Pf(M) = oo Y sgno - Moy o) - Mo2n—1),0(2n)-

cES),

» If a skew-symmetric M has odd dimensions, set Pf(M) = 0.
Then Pf(M)? = det(M) for all skew-symmetric matrices.

» This (like the determinant) assumes that the entries of M commute.

» Examples:

k
0 5 & @
0 b\ -b 0 g h|
Pf(_b 0>_b Pf e —g B = bl — ch + dg.
—d —-h -1 0

Paul-H. Balduf, Mathematical Institute, Oxford
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The Pfaffian form

Mathematical

» Consider a graph with even loop number ¢, and differential wrt Schwinger parameters ™"
di = d (CTIDC) = CT dIDC.

Then the matrix dA-A~!- dAis a £ x £ (=even), skew-symmetric matrix whose entries
are 2-forms (hence they commute).

» The Pfaffian form is defined as [Brown, Hu, and Panzer 2024]

o 1 Pf(dA-A1. dA)
© T (Con)t Vdeth

» Change of cycle basis C’ = ATCA with constant matrix A leads to

[}
ANNT dA = ATAAA (ATAA) L ATAAA = AT dAA1dA A
known: Pf(ATBA) = det(A) Pf(B).

= ¢¢ changes sign by det(A) under change of basis.

Paul-H. Balduf, Mathematical Institute, Oxford Topological Feynman integrals and the odd graph complex
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Example: Pfaffian form of the dunce'’s cap

OXFORD

Mathematical
( 1 O Institute
a ) c=|1 O A1_ 1 (a3 +ay —a3
—] —111° U—HG —3 ay + a» + as
Gotxy
Vo V3 : ;
as (M\ _ dal + (15'2 —+ (133 (,133 ) -

(15'3 da3 -1~ da4

dA A1 dA is a £ x ¢ matrix, hence 2 x 2. Recall Pf (_Ob 8) = b,

We only need the top right entry of

1 1 (131 + (132 + (,133 (133 (33 + 34)( dal + (,132) + ag (183 da (,133 — d3 (134
di\y\ (Lj\ — E ( (133 (133 + (134) <_a3( dal -+ (132) b (5‘1 - 32) (133 (81 e 82)( (133 + (134) + a3 (134)
B
This yields
e ds dal d83 + aa c132 dag — a3 dal (134 — dj3 (132 da4 -+ (31 + 32) da3 C134
. —27&&1% |

Paul-H. Balduf, Mathematical Institute, Oxford Topological Feynman integrals and the odd graph complex
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The main result

OXFORD
Jwiathematical
Compare the two example calculations for the dunce's cap: S
: asda; dag + a4 day daz — a3 da; dag — azdapdag + (a1 + a») daz day
PG = 3
—2mPE
—34( dal (183 + d82 (183) -+ 83( (181 d84 -+ (182 (134) — (81 + 82) d83 d84 103
s 8m(a1a3 + axas + ayas + asag + azag)3/? "R
4 ™\
Theorem (PHB and Hu 2025). Let C be any choice of cycle incidence matrix and P
any choice of path matrix, then det (C|P) € {+1,—1} and for all graphs
det (C|P)
Qg = — of : (PG‘
\ S

Proof: Linear algebra, expansion formulas for Pfaffians, match the Dodgson polynomial formula
for the topological form ag.

Paul-H. Balduf, Mathematical Institute, Oxford Topological Feynman integrals and the odd graph complex
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What is the Pfaffian form good for?

UNIVERSITY OF

OXFORD

Mathematical
Institute

It acts on the odd graph complex...

Paul-H. Balduf, Mathematical Institute, Oxford Topological Feynman integrals and the odd graph complex
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The even graph complex
OXFORD

» Graph complexes are important combinatorial objects in math and physics. F—
Institute

» The even commutative graph complex GCpy is vector space over 1), freely generated by
(G,n) where G: connected graph without 1- or 2-valent vertices, 7: orientation
(=permutation sign of ordering of edges) [Kontsevich 1993].

» Grading deg(G) = |E| — N - £ (we choose N = 2 since then grading = sdd). All even N

give isomorphic complexes.

» Modulo isomorphism f : G — G by (G,7) &, (G, f(n)) and —(G,n) & (G,—n). This

implies that all graphs with double edges (or other odd automorphisms) vanish.

Gyl 5
5 -
4 3 1) 4 3 (2 - 4 3
6 6 6
automorphism factor minus

Paul-H. Balduf, Mathematical Institute, Oxford Topological Feynman integrals and the odd graph complex
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Boundary map of graph complexes
OXFORD

Mathematical
Institute

» Let G/v denote shrinking of subgraph v C G to a vertex. Define the boundary operator

n

A(G,n) = (-1Y (G/ejn/e).

j=1

Example: . ‘ g = @

» Graph homology is He(GCp) = ker@/im 0. It is graded by (homological) degree, H,
where n = deg(G) = |E| — N/, and by loop number .

» Example: The above graph W3 (=wheel on 3 spokes) has OW3 = 0 since all resulting
graphs contain double edges. deg(W3) =6 — 2 x 3 = 0. Turns out it is not exact,
AF : OF = W5. Hence Ws € Ho(GGCy).

Topological Feynman integrals and the odd graph complex
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Homology of the even graph complex
OXFORD
Mathematical

» Example: Wheel with n spokes W, is closed 0W,, = 0 since contracting Pstingto
any edge yields a double edge (which vanishes).

» However, W5, = 0 due to odd automorphism. Can show that [W5,,1] € Ho(GCy) Vn > 1.
They all have degree 0 in GC; since 4n+2 —2(2n+1) = 0.

» Homologies are known up to ¢ ~ 10 [Brun and Willwacher 2024]. One finds only few classes,
but for £ — oo, their dimension grows super-exponentially [Borinsky and Zagier 2024].

Homologies of GCo:

He | vanishes due to 0 0
Hs | 2-valent vertex 0 0 0
H3 0O 1 0 1
H> O 0 0 0 0
le 0O 0 o O 0 o
Hy o 1 0 1 0 1 1
s 1 273 4 6 7 8

(

Paul-H. Balduf, Mathematical Institute, Oxford Topological Feynman integrals and the odd graph complex
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Brown's canonical differential forms

» Let G be a connected graph with cycle Laplacian A = CTIDC. Define canonical form RS
[Brown 2021] Institute

B =tr (A7 dn)").

(distinct objects are called “canonical forms” in the literature. This one is canonical because
it is invariant under multiplying A by any invertible matrix A with dA = 0.)
» Linear algebra: 3¢ is zero unless n = 4k + 1 for k € Ny.
» If k > 0, the form is projectively invariant; dg**1 =0. b
» These are the primitive canonical forms (i.e. define a coproduct A such that
ABHFL = 1 @ g+l 4 g%+l @ 1). They generate an algebra of canonical forms, where
products might have different degree. E.g.

OXFORD

B> A B° has degree 14 # 4k + 1.

» If we is a canonical form of degree n and |E| = n+ 1, then w is proportional to the
projective volume form Q g,

some polynomial
we = — Q]E|.

Paul-H. Balduf, Mathematical Institute, Oxford Topological Feynman integrals and the odd graph complex
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Canonical integrals
OXFORD

Mathematical
Institute

» Canonical forms can be used to find cohomology classes in the graph complex.
Let G be some (linear combination of) graphs such that 9G = 0 (this can be checked by
explicit computation). Hard part: How to establish whether 3F such that OF = G?

» As d3 =0, itis [ d3 = 0 for every graph F, where [, = fUF with
oF =[ay:...: ag)] € P(RIE). (“graph simplex”).

0:/ d[}’:/ ,6’:],6’ (if OF = G).
F JoF G &

This integral vanishes for all primitive canonical forms £.
(There are more terms for a non-primitive w = A 3 A ..., but it still vanishes).

» Conversely, if one finds any 8 such that [_ 3 # 0, one knows that G # OF. That is, G is
not exact, and since 9G = 0, this G defines a cohomology class in the even graph complex.

» Stokes theorem:

» Equivalently, one can view the integrals as elements of the dual of the complex
(Ig(w) := [c w is a linear map from GC, to RR).

Paul-H. Balduf, Mathematical Institute, Oxford Topological Feynman integrals and the odd graph complex
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The odd graph complex
athematical
» The odd graph complex consists of oriented graphs (G, n), where the orientation 7 is a stiute.
labeling of vertices + a choice of edge directions (= the information which is contained in
the incidence matrix I, mod 2).
n equivalent to (cycle basis + edge order) [Conant and Vogtmann 2003].

» Again, vertex valence at least 3, modulo graph isomorphism. All odd N give rise to
isomorphic complexes GCp. Choose GC3 with grading deg(G) = |E| — 3¢.

» Tadpoles vanish: _c;’_ = Q_

» Multi edges no longer vanish automatically, but graphs which are only multi edges with
even number of edges (=odd number of loops) vanish.

o
o
:

automorphism factor minus

Paul-H. Balduf, Mathematical Institute, Oxford Topological Feynman integrals and the odd graph complex
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Homology of the odd graph complex

OXFORD

» Same boundary operator as for GCs: kb
o(G,n)=> (-1Y (G/e.n/ej).
j=1

» Example: All even-loop multi edges are closed.

» H_3 is “algebra of 3-graphs” [Duzhin, Kaishev, and Chmutov 1998; Vogel 2011].

Homologies of GCs:

H_g known to 0
H_7 vanish 0 0
H_g i i 2
H_s 0o 0 0 O
H_4 0 0 0 0 0
@ H_; a 1 2 2 3 4
¢ 1 /2 3 4 Sb

Paul-H. Balduf, Mathematical Institute, Oxford Topological Feynman integrals and the odd graph complex
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The role of the Pfaffian form T

Mathematical
Institute

» Recall that canonical forms ﬁék“ operate on the even graph complex.
» The odd graph complex requires a form that flips sign in the same way as the graphs do.

» The Pfaffian form ¢¢ has this property [Brown, Hu, and Panzer 2024], it is an “orientation
form”. Concretely, for a cycle Laplacian A +— ATAA we have

pliotlesy gtesl, but ¢+ det(A)g.

= [ ¢ Aw is well-defined on the odd graph complex, where w is any product of 3 forms.

» Can use _fG ¢ A\ w to compute homology. But note A¢p = ¢ @ ¢ = more terms in Stokes
relation. N

» Example from [Brown, Hu, and Panzer 2024]: For ¢ = 6, the form 3° A ¢ is of degree 11.
There is a linear combination of graphs with ¢ = 6 and |E| = 12 where the integral is
non-vanishing, it spans the homology H_¢ at / = 6.
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Consequences

OXFORD

Mathematical
Institute

Now we know what « is and what ¢ is, and that they are the same.
What can we learn from this?
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Paul Bal

Consequences

OXFORD

» Obtained a new representation for ag. Since ¢¢ is (directly) given by matrices, ethemelisy
many of its properties follow easily from linear algebra.

» dag =0, and [ ag is finite, projective, well-defined under change of labelings, etc.

» For example: Contracting (non-tadpole) edge, or inserting 2-valent vertex into edge, is
canonical isomorphism s of cycle space. Then ag = +s*(ag).

4 93
— —
as V2 ’ V3
d
azda; A da as(daj + day) A c‘l'.ag

—
(3122 + 233+ 2123)Y2 (ol + )al + (af + ah)al + 25;)
(tag + ta3)(dti2 + dts) A dixs
3/2°
((flz + t31)ta3 + (ti2 + t31)(tos + taz) + to3(tos + taz)) 4

H

Paul-H. Balduf, Mathematical Institute, Oxford Topological Feynman integrals and the odd graph complex
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Formality theorem

OXFORD

Mathematical
Institute

» Kontsevich formality theorem [Kontsevich 2003] ag A ag = 0 (there are no anomalies in
TQFTs with D > 2) proved with some effort in [Balduf and Gaiotto 2024; Wang and Williams

2024].
» Now use that Pf(A)? = det(A):

(Pf (dAA~1dA))” = det (A1) det (dA A1 dA) = det (AL dA A1 dA)

= det ((A’ldﬂ\)z) =:det (M) = (6—;2?8,, (s1,52,...),

o6 N\ PG X
et

where B,, are Bell polynomials and

Sj = ~@ tr (Mj) = - U “21)! tr ((i\_l (lz?\)2j) = —U _21)11825‘ =0 Vj.
W

(recall that only 3**1 £ 0 due to cyclicity of trace and symmetry of A).

» Hence &g A o = 0, and therefore ag A avg = 0.
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Dipole sums in TQFT
OXFORD
> Reca” {Ol, 02, - } = Z ‘Aut IG H H Di v ?;ﬁ:?::amal

Graphs G ) veVg I
symmetry factor A_— External leg structure
Feynman integral

» o is of form degree ¢, so _fG ag # 0 only if |[E| = £ + 1, which are multi-edge graphs

;11
(=dipoles) Dsjyq1 with £ = 2i. Then ap,, , x Qg‘+1/’¢‘lc+2 and Ig = fG o= 2%

» For local operators 01, O, (polynomials in p and q), propagator connects p with g,

(_ ‘ | ‘ ‘ 0 -1
2 =(%:01)(3,02) = (9301) (902) = P’ (01)(3,02). 1= (1 0)'
1 2

5@5 = (820)) (820,) — (828,01) (820,0) *+ ... = nin*n™(8;040mO1)(8;810,0s).
1 2
» The sum becomes the Moyal commutator {01,032} = O1 % Oy — Oz x 01 = [01, O3],

{011 02} - Z li]; '7 (?7 )2n+1 (d2n+10 ) (a2n+102) .

n—

» Subtract anomaly to obtain a quantum corrected differential Q" = Q § {-, O}.
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Dipole sums in graph complexes
OXFORD
Mathematical

» Dual complex of GC3 has codifferential 4 which acts by splitting a vertex, Institute
i.e. inserting an edge (=0-loop dipole Dy) into a vertex. Can be expressed as Lie bracket
(SGE[GD@] — GODO—DOO G.

» The integral [, ¢ is non-zero iff G is a (linear combination of) dipoles. Hence, the
Pfaffian can be viewed as a pairing with dipoles,

N

. o0
[ . . D2:+1
e = (G.m with the dipole sum
./G(G (S g ;221-{—1

» Curious fact: The Lie bracket with m+(edge) is a codifferential, too [Khoroshkin, Willwacher,
and Zivkovi¢ 2017], twisted differential

8 =86+[,m].

(i.e. insert dipole sum instead of just one edge)
The cohomology of GC3 wrt this codifferential ¢’ (instead of the usual d) is 1-dimensional,
with the only class is a sum of dipoles itself.
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Stokes relations

OXFORD

Mathematical
Institute

» For Pfaffian-only /¢ = fc; o (i.e. not wedged with canonical forms w), have the Stokes
relation [Brown, Hu, and Panzer 2024]

1|
0=l3c+ 5 s, lc].
» Choose G=triangle with dipole sides, then 9G= dipole and one obtains recurrence

I, = (Ip,)" ¥

» On the other hand, brackets {-} form L. structure. Amounts to quadratic identities

Z sgn(G,S)AG[S] X AG/S = ()
5CG, |Vs|=2

for their integration domain A (the operatope) [Gaiotto, Kulp, and Wu 2024; Budzik et al. 2023].
These are equivalent to the Stokes relations above.
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Conclusion
OXFORD

Mathematical
Institute

» There is a certain, “topological”, differential form o of degree ¢ in Schwinger parameters
which computes BRST anomalies in TQFTs.

» There is another, "“Pfaffian”, differential form, ¢¢, of degree £ which realizes the
combinatorial sign of the odd graph complex GC3 and therefore makes integrals

fG ¢ N we well-defined, where w¢ is a canonical form (which on its own lives on the even
graph complex GC,).

The two forms are the same. y

This leads to some simplified proofs for avg, and to a physical interpretation for ¢g.

The sum of dipole/multi-edge graphs plays a special role on both sides.

Stokes relations have been known, and are important, on both sides.

vvyYyyvyy

On both sides, one is interested in products between this form and some other forms.

Further investigations are currently in progress (with Simone Hu).
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