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Abstract:

As we've seen at this workshop, exciting progress has recently been made in the study of neural networks by applying ideas and
techniques from theoretical physics. In this talk, | will discuss a precise relation between quantum field theory and deep neural
networks, the NN/QFT correspondence. In particular, | will go beyond the level of analogy by explicitly constructing the QFT
corresponding to a class of networks encompassing both vanilla feedforward and recurrent architectures. The resulting theory
closely resembles the well-studied O(N) vector model, in which the variance of the weight initializations plays the role of the 't
Hooft coupling. In this framework, the Gaussian process approximation used in machine learning corresponds to a free field
theory, and finite-width effects can be computed perturbatively in the ratio of depth to width, T/N. These provide corrections to
the correlation length that controls the depth to which information can propagate through the network, and thereby sets the
scale at which such networks are trainable by gradient descent. This analysis provides a non-perturbative description of
networks at initialization, and opens several interesting avenues to the study of criticality in these models.
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The state of the art

How deep neural networks work:

—) It'san apple!

“Machine learning has become alchemy” [NeurlP$S]
On Friday, someone on another team changed the default rounding
mode of some Tensorflow internals (from truncation to ‘round to
even”). Our training broke. Qur error rate went from < 25% error
to 99.97% error (on a standard 0-1 binary loss).
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The state of the art

Thea Retician

Machine Learning is just
Linear Algebra. Or Linear
Regression. One of Those.

@ Springer

THIS 15 YOUR MACHINE LEARNING SYSTET?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF UNEAR ALGEBRA, THEN COLLECT
THE ANSLERS ON THE OTHER SIDE.

WHAT I THE ANSLERS ARE \RONG? J

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

Need understanding of physical principles, “theory of deep learning”

Page 4/36



Physics — Deep Learning

Black Box

@ Shift focus from techniques to boost performance, to simple models
to help explain basic phenomena

@ Distill fundamental physical principles, simple theory as building
blocks to complicated problems

— physics-based approach towards a Theory of Deep Learning

Pirsa: 25040128 Page 5/36



Pirsa: 25040128

Applying field-theoretic ideas

Stat phys: scaling limits (Bordelon, Pehlevan), feature learning
(Loureiro), spin-glass models (throw a dart)
RG: Bayesian inference (Berman, Howard), optimal transport
(Cotler, Rezchikov), renormalizing Gaussian Processes
(Howard, Ringel, Maiti, RJ)
QFT: effective theory (Roberts, Yaida, Hanin), NN

phenomenology (Halverson, Maiti), duality with O(N)
models (Grosvenor, RJ)
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Infinite-width limit

As N — oo, statistics Gaussian even if individual z¢ are not (because
central limit theorem, provided {z§, 2%, ...,2%_,} sequence of i.i.d.
random variables with finite variance) — Gaussian Process

Y1 Y2
Q @ P(y1.42)

analytically tractable, extremely general (MLP, CNN, RNN, skip
connections, etc.)

infinite-width DNNs effectively shallow, linear models; NTK does
not evolve, no feature learning <= no interactions
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Infinite-width limit

As N — oo, statistics Gaussian even if individual 2! are not (because
central limit theorem, provided {z§,2%,...,2%_,} sequence of i.i.d.
random variables with finite variance) — Gaussian Process

yr Y2
) @ p(y1.y2)

analytically tractable, extremely general (MLP, CNN, RNN, skip
connections, etc.)

infinite-width DNNs effectively shallow, linear models; NTK does
not evolve, no feature learning <= no interactions
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Perturbative QFT in a nutshell

@ Perturbative QFT: the art of backing away from N — oc.

@ Basic idea: solve complicated (non-Gaussian) theory by perturbing
about the free (Gaussian) theory, in terms of some small parameter.

@ Physically, turn-on interactions (= finite-width effects) in a
controlled manner

Example: quartic interaction
1 1 A 1
p(z) = 7z exp {—522 — 524} , with A~ N

Perturbative corrections to correlation functions, e.g.,

(z122) = +m+o+%+oo+
\\// s
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Interlude: criticality

Systems at criticality exhibit structure on all scales

Unique trade-off between information transmission and storage

Pirsa: 25040128 Page 12/36



I'=0.9971T,
768
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Computation at the edge of chaos

@ DNNs are trainable when they lie near criticality
chaotic phase: correlations washed-out; hot (exploding gradients)
ordered phase: correlations damped; cold (vanishing gradients)
critical point: Goldilocks zone between info transmission & storage

@ Depth should not exceed scale set by £

0.25

0.20

ordered

chaotic

1611.01232, 2107.06898
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NN/QFT correspondence

Would like to have a bottom-up framework for studying real-world DNNs
using techniques/ideas from physics (beyond GP).

Objective: explicitly map DNN to a bona fide QFT

@ Starting from NN SDE, marginalize over stochasticity to obtain
probability of a particular sequence of network states

@ Continuum limit in depth to obtain path integral of O(N) model
© Perturbation theory in L/N at weak 't Hooft coupling o2,
O Compute correlations, study DNN as we do any other field theory

2109.13247, 258520000%
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SDE formulation of RNNs

Statistical field theory approach 1901.10416

dh = f(h,z)dt + g(h,z)dB , h,z, dB € RY

Deterministic update:  f(h,z) = —yh+ W¢(h) + Up(z) + b

Stochasticity/noise: g(h,xz) € RVxN
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NN/QFT correspondence

Would like to have a bottom-up framework for studying real-world DNNs
using techniques/ideas from physics (beyond GP).

Objective: explicitly map DNN to a bona fide QFT

@ Starting from NN SDE, marginalize over stochasticity to obtain
probability of a particular sequence of network states

@ Continuum limit in depth to obtain path integral of O(N) model
© Perturbation theory in L/N at weak 't Hooft coupling o2,
QO Compute correlations, study DNN as we do any other field theory

2109.13247, 2585200005
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SDE formulation of RNNs

dB;

e dt

hy —hi_1 = f(he—1, Te—1)n + g—1&, m=dt, § =

Assume &; independent; probability of particular path p(t) is

T

[ d&t p(&t) 0(he — ye(&ty he—1))

t—0

where p(&;) is probability density of noise increment &;, and

Yt(&y hi—1) = he—1 + f(he—1, Ze—1)n + gr—1&:

Pirsa: 25040128

Page 18/36



Introduce auxiliary fieldvariable

Express Dirac delta in terms of response field z = ik € C:

[
oo 2T

Probability of path A(t) now an integral over Z:

T 00 1~

dz; ;4.
—[fdgtp(ft) _tezt(ht weSehe—1))
=0

—i00 271'?:
0 4z . 3
f exp [Z¢ (hy — hi—1 — fi—1m) — Z191—1&4]
100 me

100 dgt B 3
9 &P [Z¢ (he — ht—1 — fe—1m) + Ke(—Zt9t—1)]
—io0 4T
where K¢(—Zigt—1) = In{e™*9t-18) = In [ d&; p(&;) e *t9t-1%¢ is the
cumulant generating function of &;.
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Obtain moment generating function

Add source terms j:h;n, integrate over all paths h:

2[j] = <Heﬁ’“ﬂ> H / dh, p(h(t)) 7T

t=0

dzt
dh ht — hy—1 — h K
{/ t m}eXpZ[Zt t — ht—1 — fe-1m) + jthen ¥ Ke(—Zegi-1)]

t=0

Partition function for h: 0;,,Z]j] { —o = (he)n
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Continuum-Ilimit n — 0

Path-integral measures:

100 d
lim / = / Dz
n—0 — = 27TZ

Fields within the exponential,

. ht —hi—1
lim, th / dt h(t) , lim » === f dt 8;h(t)

: n

Path integral of continuum field theory:
20 = [DrDzexp { [ atlz(o) @1he) - 10) + 50 + Kn(~20)

where Kp(—zg) =In [DEexp {— [dB z(t)g(t)}
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Pause to take stock

So far, we have done the following:

@ Started with general SDE describing the network
@ Marginalized over stochasticity to obtain p(h(t))
@ Added source for h and integrated over all paths
@ Took continuum limit in the layer/temporal index

Path integral still depends on parameters (via f(t)):

71j) = [Dhpzexy { [ at1zte) @ihie) - £6) + steyne + KB(—zm}

Isolate behaviour/statistics of h by tracing over parameters, obtain
partition function for ensemble average Z[j] = (Z[j])wup
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Self-averaging random networks

Consider ensemble of random networks:

Xij ~ N(O? 03) ) X = [Xij] € {W, U} )
bi ~ N(0,02) , b= [b]

Self-averaging: instantiations vary, but physical properties given by mean
ensemble values:

2031 s= (2lixo = [T [ 4% [ dben(Xi) o0 21

where p(Xij =
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Self-averaging random networks

Plug in f, perform integral over X € {W,U} and b:

Z[.?] : /Dh/DE eSO"'ﬁSmﬁ‘i‘Sint

o f dt 5(8) (8 + ) h(t) + Ka(—7g)

eint — /DWDUDb exp {— /dt Zi(t) (Wiid(hji(t)) + Usjo(z(t)) + bi]}
_ —Wij dt Eiq‘)(hj) =Uij dt z; (..'L‘J) —b; [dtz;
B <6 g >W <6 Jarze >U <e ! >

b
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Self-averaging random networks

Each (...) a product of i.i.d. Gaussians, e.g.,

<6—Wij fdtfi¢(hj)> — H/dmj p(Wtj) e—Wijfdtgi¢(hj)
j

w

= o Z ) / dt, dts 7 (t1) Zi(t2) B (hj (1)) B(hs (t2))

Interaction term then
i — %/dtl dts ; gi(t]_) 2 (tg)
X Z 07 + 02, d(hi(t1)) d(hj(t2)) + os (;(t1)) (z;(t2))]

N.b., factorized into N independent subsystems E:,f coupled to Zj
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Analogy with O(N) vector model

Motivates introducing auxiliary field variables

W(t1,t2) = \/%Z ¢(hj(t1)) p(hj(t2)) ,  sim. U(t1,12)

o In O(N), gym = /4 = 't Hooft coupling A +— o2

e Convergence requires weak ('t Hooft) coupling, 02 < 72

Enforce constraint via delta functions as before:

1 2
esint = /D%exp {E/dtl dto Zéz(tl) 23(132) O'E + %w(tlth)] }

[

3 (20001,12) — /22 3 0001 o(002)

then write delta function as integral over W
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Finally...

Our theory is then
Z = f DX DX Dh D3 eSotSm

where the quadratic part is

0= [ at| 5000+ i) + 52050

1 [ o2 o2 . .
+ 1 [anat[op 44/ %m0 +f ﬁuo(tl,tz)] (1) (t2)

1 - -
— é /dtl dis W(tl,tz)ﬁn(tl,tz) -+ U(tl,tg)ﬂ(tl,tg)}
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Perturbation theory

Interaction term intractable, since field A hidden within ¢:

[ oSBT t1, 2) 0 (1)) (s 2)
Take ¢(h;) = ¢(h;) = tanh(h;) = h; — %3 +O(h})

Interaction part then

S =+ [ dty dta |/ T2 2081, £2) + 1/ ZE sA(t1, 82)] Z:(t0) B (0)
mt—2 1 at2 N 1,102 N 1,02) [ 2i\l1) 2i(1l2

- %/dh dts [\/%W(tl,tz)(hi(tl)hi(h) - ghi(tl)hi(t2)3)

o2 ~

WU(tl,h)(wi(tl)xi(w) — ;xi(tl)iﬂi(tiz)S) ]
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Beyond MFT: Feynman rules for linear models, ¢(h)

(t) propagating to h(s): Gpp(t—s) = ¢ >
(t) propagating to 2(s): Gpz(t—s) = t ——
Z(t) propagating to h(s): Gz(t—s) = t ——>——s

t1

e 2 (tq,t2) propagating to W(tg,t4): Gy = , ==

Ei

@ 3-pt vertex W(tg,t4)h(t1)h(t2): X >

to
t1

@ 3-pt vertex m](tg, t4)2(t1)§(t2)2
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Infinite O(1) cacti

First perturbative correction given by infinite sequence of cactus
diagrams, each O(1):

Physical interpretation: statistical fluctuations in ensemble of networks.
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Infinite O(T'/N) mushrooms

Second perturbative correction given by infinite sequence of mushroom
diagrams, each O(T'/N):
i_ 0\
i/
i

)

Physical interpretation: effective interactions
due to finite-width effects.
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Loop-corrected propagator

A more elegant method: diagrammatic recursion relation for linear
models

+ —— O+ -

where X©) and X(1) denote O(1) and O(T/N) contributions to X in
the expansion

T
X=X+ NX
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Effective correlation length

Infinitesimal perturbations about fixed point:

A B

iterative correlation map dynamics of ¢
1.0

,_
[

output corr. (c!)
correlation (c!)

0.5 : 5 15
input corr. (c¢!71) iteration (1)

— 0, = 1.3 — Ty = 2.1

Examine correlator at small times |7]:

2
K, _r ¥ T
X(r) ~ Sge e+ Tgf (2 + »y—Nggai,) O off

Identify loop-corrected correlation length:

¥
g= 20 [1+ VS + 8N(l+37253)£§ai}
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Non-linear models —> 5-pt interaction

Quintic interaction yields much more complicated diagrams, e.g.,

J}g)k)()

xJKéKéD
x5151
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Non-linear models: once more, with feeling!
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NN/QFT correspondence (s version

Summary:
@ NN/QFT correspondence: explicit duality between systems.
@ Systematic computation of finite-width effects, study criticality.
@ Remarkable parallels with well-studied O(NN) vector model, 't Hooft
coupling o2 ; exploit standard tool set
@ Bottom-up approach to physical theory of DNNs.

Open questions:
@ Difficult to observe shift in critical point at weak coupling; higher
order? Strong coupling? Nonperturbative effects?
@ Explore: other observables? RG flow to critical initializations?
@ Local rotation symmetry — gauge theory, RMT?
@ Test it! How big is O(1)? O(T'/N)? Loop-corrected £ vs. empirics?
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