Title: TBA - Quantum Information Seminar
Speakers: Daniel Gottesman
Collection/Series: Quantum Information
Subject: Quantum Information

Date: April 16, 2025 - 11:00 AM

URL: https://pirsa.org/25040124

Pirsa: 25040124 Page 1/31

Pi

: 25040124

Low-Depth Quantum
Symmetrization

Daniel Gottesman

Joint work with Zhenning Liu, Andrew Childs

ﬁt 5 e e JOINT CENTER FOR
LS IFig Robust Quantum (S QUANTUM INFORMATION
A4 Simulation AND COMPUTER SCIENCE

Page 2/31

Pirsa: 25040124

Suppose we have a system consisting of a group of bosons.

* Bosons can be in the same state and are symmetric under
interchange of particles.

* Fermions must be in different states and are anti-
symmetric under interchange of particles.

Second-quantized representation: # particles in each mode

* Boson example: |0120)
* Fermion example: |0111)

First-quantized representation: give mode for each particle

* Boson example: [2)[3)(3) +[3)[2)[3) +13)13)[2)
* Fermion example:
12)13)14) = 13)12)14) = 14)13)12) = [2)[4)|3) + [4)12)|3) + [3)[4)|2)

Page 3/31

Pirsa: 25040124

Which representation is better? First or second quantization?

Suppose we have n particles in m modes.
First quantized representation:

» Size is nlog m for bosons or fermions
* Useful for computations about each particle separately
* Requires explicit symmetrization or antisymmetrization

Second quantized representation:

» Size is mlog n for bosons or m for fermions
* Useful for computations which involve all particles
* Symmetrization and antisymmetrization are automatic

Both can be useful in certain contexts.

Page 4/31

Suppose we want to run a quantum simulation in a first-quantized
representation. To create the initial state, we might have a list of
particle locations, e.g. (2, 3, 3) or (2, 3, 4).

Given this list, our goal is to create the symmetrized or anti-
symmetrized states corresponding to these lists:

(2,3,3) = 12)13)13) +13)12)13) +[3)13)12)

(23,4) = 12)[3)]4) = 13)12)|4) — 14)[3)12) — 12)[4)|3) + 14)2)|3) +13)4)|2)

Note:

(Anti-)symmetrization of arbitrary quantum states is a
computationally very powerful operation. It is also not
reversible.

But: (anti-)symmetrization of a sorted classical list is not as
powerful and is reversible.

Pirsa: 25040124 Page 5/31

Pirsa: 25040124

For fermions, all numbers in the list must be different. If we
assume the initial list is sorted, it is a strictly increasing list (SIL).

We can also have a SIL for bosons.
Start with SIL l —_ (ll’ lz, ceey ln) with li < li+1'

We wish to create the state

E |6(1)) (for bosons)

oES,

or

Z (—1)?| (1)) (for fermions)

oES,
We sum over all permutations for a SIL. Our goal is to do this in
polylog (n) depth.
This is reversible since given any | 6(/)), we can sort it to recover | [).

Page 6/31

Sorting is going to play a central role in this algorithm.

A classical reversible sorting algorithm SORT does the following:

SORT : |6(1)) |0) — |I) | rec(c)) with [a SIL.

It leaves behind in an ancilla register a record rec(o) of the
original order, which just depends on the permutation o.

We can also do the inverse UNSORT:
UNSORT : |1)|rec(o)) — |o(l))]0).

Other options:
SHUFFLE : |o(l)) | rec(7)) — |t(c(]))) | rec(z)).
UNSHUFFLE : |o(])) | rec(7)) = |t (a(])) | rec(7)).

Pirsa: 25040124 Page 7/31

Pirsa: 25040124

Let us focus first on the symmetrization of an SIL.

If we SORT the output state of symmetrization, what do we get?

SORT :)" |o(D)|0) = Y || rec(o)) = |1)) | rec(o))

Note that the ancilla Z | rec(6)) has no dependence on . So

(e
we can creating this ancilla state and then apply UNSORT with it
to our SIL:

UNSORT : | 1) Z | rec(6)) — Z |6(D)) | 0)

Page 8/31

Pirsa: 25040124

How can we create the ancilla state?

Since it doesn’t depend on the actual list, we can create it by
starting with a superposition of random unsorted lists.

Dy D 1m) D) 10y =), Y le()

Here r is an SIL with random entries. Why is this only

approximate! If r; = r; then sorting won’t give us an SIL. But if

we take each sum over r; to be over a large range of numbers,
then the chance of this is small and the superposition is close to
one over only permutations of SlLs only.

SORT Z Z |o(r)) |0) — Z |) Z | rec(o))

Discard the first register to create the desired ancilla.

[Berry et al. 2018]

Page 9/31

Pirsa: 25040124

|. Create superpositions of all numbers over a wide range.

2. Check that all numbers are different (if not, redo step I).

3. Apply SORT to this superposition of random lists.

4. Discard the sorted list and keep the ancilla with the sorting
record.

5. Apply UNSORT to the SIL input and the ancilla.

Steps |, 2,and 4 are low depth. If we use a low-depth classical
sorting algorithm, steps 3 and 5 are also low depth.

For antisymmetrization, just insert a step between 4 and 5 to
apply a phase (—1) (i.e., £1 depending if the permutation is
even or odd).

Page 10/31

But for bosons, there is the possibility that two or more particles
are in the same mode. We can still assume the list of particle
positions is sorted initially but now the list is a non-strictly
increasing list (NSIL):

NSIL l — (ll’ lz, ...,ln) has lt S lf+1'

The Berry et al. algorithm doesn’t work any more, because
UNSORT is no longer reversible:

UNSORT : |1)|rec(o)) — |o(l))]0).

Different permutations can produce the same output if they
permute two identical /s.

We can fix up the algorithm by creating an ancilla which separates
out the permutations that leave / invariant. But this still doesn’t
work if we have a superposition over different lists / since the
ancilla retains information about the repetition pattern of /.

Pirsa: 25040124 Page 11/31

We need another method to create the correct ancilla. We take

advantage of an equivalence between permutations and lower
exceeding sequences:

A lower exceeding sequence (LES) is a sequence of n
numbers s; € {1,...,n} such that s5; < 1.

Examples:

*(1,2,2),(1,1,2),and (1,2,1) are LESs.
*(2,1,2),(1,3,2),and (1,2,4) are not LESs.

Notes:

* The number of LESs is n!, the same as the number of
permutations.

» Generating a superposition of all LESs is straightforward.

[Alonso and Schott, 1996]

Pirsa: 25040124 Page 12/31

Given a permutation o, we can represent it as a sequence o(12...n).

E.g:06(123456) = 465312

Color box o(i) in the ith row

The jth element s; of the LES
is the # of filled boxes
between the bottom left and
the filled box in the jth
column (inclusive).

In the example, the LES is:

Note: This will always be an LES
since there can be at most | filled
boxes up to column j.

Pirsa: 25040124 Page 13/31

Given a permutation o, we can represent it as a sequence o(12...n).

E.g:06(123456) = 465312

Color box o(i) in the ith row

The jth element s; of the LES
is the # of filled boxes
between the bottom left and
the filled box in the jth
column (inclusive).

In the example, the LES is:

| 2
Note: This will always be an LES

since there can be at most | filled
boxes up to column j.

Pirsa: 25040124 Page 14/31

Given a permutation o, we can represent it as a sequence o(12...n).

E.g:6(123456) = 465312

Color box o(i) in the ith row

The jth element s; of the LES
is the # of filled boxes
between the bottom left and
the filled box in the jth
column (inclusive).

In the example, the LES is:

2
Note: This will always be an LES

since there can be at most | filled
boxes up to column j.

Pirsa: 25040124 Page 15/31

Given an LES, fill in boxes
starting with the rightmost
column. For column j, color

the box in row s; not counting

any already-filled rows.

Example: LES (1,2, 1, 1,2,2)

Note:This will always produce a
permutation and the same one that
gives this LES.

Pirsa: 25040124 Page 16/31

Given an LES, fill in boxes
starting with the rightmost
column. For column j, color

the box in row s; not counting

any already-filled rows.

Example: LES (1,2, 1, 1,2,2)

S¢ = 2,50 row 2

ss = 2,s0 row 3 (I filled
below already)

Note:This will always produce a

permutation and the same one that
gives this LES.

Pirsa: 25040124 Page 17/31

Given an LES, fill in boxes
starting with the rightmost
column. For column j, color

the box in row s; not counting

any already-filled rows.

Example: LES (1,2, 1, 1,2,2)

S¢ = 2,50 row 2

ss = 2,s0 row 3 (I filled
below already)

s, = 1,so0 row |

53 = 1, so row 4 (since first

three rows already filled) Note: This will always produce a
permutation and the same one that
gives this LES.

Pirsa: 25040124 Page 18/31

Given an LES, fill in boxes
starting with the rightmost
column. For column j, color

the box in row s; not counting

any already-filled rows.

Example: LES (1,2, 1, 1,2,2)

S¢ = 2,50 row 2

ss = 2,s0 row 3 (I filled
below already)

s, = 1,s0 row |

53 = 1, so row 4 (since first
three rows already filled) Note: This will always produce a
s, = 2,50 row 6 permutation and the same one that

sy = 1,50 row | gives this LES.

Pirsa: 25040124 Page 19/31

Pirsa: 25040124

To convert an LES to a permutation in polylog depth, divide and
conquer: Build the left and right halves of the diagram separately
and then merge them.

Merge by inserting rows

of left half into empty
rows of right half.

This can be done via a
sorting algorithm: sort
rows, with ith row from
the left after jth row
from right if i + f; > j,
where f; is the number

of filled rows on right

below row j. (1.2,1) (1,2,2)

Example: LES (1,2, 1, 1,2,2)

[Irreversible: Alonso and Schott 1996, Reversible: new]

Page 20/31

Pirsa: 25040124

If we have an NSIL, there will be some permutations that leave
the list / invariant. These permutations form a subgroup H,.

E.g.:for list [= (2,3,3), the subgroup H, = {e, (23)} (i.e., the
identity plus the swap of the second and third list elements).

An arbitrary permutation ¢ can be written as ¢’'h, where
h € H,and ¢’ is a coset representative of H,.

The subgroup H, is equivalent to subset of LESs with the
following properties:

Ifl,_, <l < I, (list increasing) then the LES element s; = i.
ofl,_ <l,=1,01 = =1, <l (list constant) then
a<s;{ifora<i<b.

Thus, given a pattern of repetitions within a list, we can generate
a superposition of LESs that correspond to all elements of H,.

Page 21/31

. Generate a superposition of all LESs, convert to perm.: Z |o(1...n))

o

. SORT: Z | rec(o)) | 1...n)
: SHUFFLE: | 1) Z | rec(6))|1...n) — Z |o(l)) | rec(0)) | 1...n)
. UNSORT on a:cilla: Z lo(D)) | 0)|0(16...n))

. Decompose ¢ = o'h: E |6(1))10) Y |o’h(1....n))
. SORT list I: Z |l)|rec(a)) b |a’1il(61H[1))

. UNSHUFFLE ancilla: Z 1) rfi(a’)) Z |h(1...n))
. UNSORT: Z |6'(1)) |0) > Al nh)iH

heH,

Pirsa: 25040124 Page 22/31

. Generate a superposition of all LESs, convert to perm.: Z |o(1...n))

(2

. SORT: Z | rec(o)) | 1...n)
: SHUFFLE: | 1) Z | rec(6))|1...n) — Z |o(l)) | rec(0)) | 1...n)
. UNSORT on a:cilla: Z (D)) | 0)|0(16...n))

. Decompose ¢ = o'h: E |6(1))10) Y |o’h(1....n))
. SORT list I: Z |l)|rec(a)) b2 |a’1:(61H[1))

. UNSHUFFLE ancilla: Z 1) rf:é(a’)) Z |h(1...n))
. UNSORT: Z |6'(1)) |0) b3l o nh)iH

heH,
. Convert to LES, uncreate the superposition: Z |6’(1)) | 0)] 0)

o_f

Pirsa: 25040124 Page 23/31

Pirsa: 25040124

* Creating Dicke states: 2 |)
|r|=k

There are other ways of creating Dicke states, although ours
is better in some ways than many.

* Creating initial state for a quantum simulation in first-quantized
representation. Advantageous for many modes and few
particles.

* Arrays of quantum telescopes collect photons and bring them
together to do a quantum computation. Collect light in
second-quantized representation but computation may be
advantageous in first-quantized representation.

Page 24/31

An array of telescopes collect light; we can imagine capturing
individual photons in a quantum memory. With many telescopes,
we may get many photons at the same time.

This naturally leads to a second-quantized representation, with 7,
photons arriving at telescope i.

Pirsa: 25040124 Page 25/31

Pirsa: 25040124

If we have a single photon arriving at a time and we want to do
interferometry to reconstruct the direction of the photon, we
should do the Fourier transform.

First we convert the state (with | photon at telescope i and
0 photons elsewhere) to the representation |i) (the photon
is at telescope i).

But really it is arriving at a superposition of locations:

Z e 2idj sin 6/ 17 (d distance between telecopes,
A wavelength of light)

J
The quantum Fourier transform will convert this to

Z | md sin 8/4 + mv) (m number of telecopes)
veZ

which lets us determine the direction 6 the photon is coming
from with precision A/(md).

Page 26/31

If we have multiple photons, we would like to do the Fourier
transform on each one individually.

This would use the state

(Z e 2midjy sin6)/1 iHe® (E g 2ridjysin 6,11) ® (E g 27idj sin 65/2 |) ® -
- 2 '

Ji I3

(assuming photon i comes from direction &)).

But actually, this is not the correct state because of Bose
statistics, which give a different combinatoric factor to

(unsorted) lists (jy, j, .., J,,) With repetitions in them.

Moreover, this a first-quantized representation and the
telescope array collects a second-quantized representation.

How can we change between them?

Pirsa: 25040124 Page 27/31

Pirsa: 25040124

Suppose we have a second-quantized representation |a,a,...a,,).

* We can convert this directly into an NSIL by stepping
through i and writing i to the list g; times.
* Then we use the symmetrization algorithm on the NSIL.

The output is the correct symmetrized state in first-quantized
representation.

If we now perform a quantum Fourier transform on each photon
separately, the combinatoric factor works out correctly and we
get the output (suppressing scaling factors within the kets):

D 16,1 1852)) |)+

Measurement gives us a list (in random order) of angles from
which the photons are coming with precision A/(md).

Page 28/31

* We have presented an algorithm to symmetrize a sorted list of
n numbers in depth O(polylog n).

* It works coherently on superpositions of sorted lists with no
garbage left over.

* [t can convert from second-quantized representation to first-
quantized representation (and the inverse algorithm converts
the other way).

* Applications include creating Dicke states, preparing states for
simulations of bosons, and processing quantum data received in
quantum telescope arrays.

FEFYFEFEFEEEET

Pirsa: 25040124 Page 29/31

Given a permutation o, we can represent it as a sequence o(12...n).

E.g:06(123456) = 465312

Color box o(i) in the ith row

The jth element s; of the LES
is the # of filled boxes
between the bottom left and
the filled box in the jth
column (inclusive).

In the example, the LES is:

Note: This will always be an LES
since there can be at most | filled
boxes up to column j.

Pirsa: 25040124 Page 30/31

Pirsa: 25040124

How can we create the ancilla state?

Since it doesn’t depend on the actual list, we can create it by
starting with a superposition of random unsorted lists.

DAy D 1) Do) 10y =) Y le()

Here r is an SIL with random entries. Why is this only

approximate! If r; = r; then sorting won’t give us an SIL. But if

we take each sum over r; to be over a large range of numbers,
then the chance of this is small and the superposition is close to
one over only permutations of SlLs only.

SORT Z Z |o(r)) |0) — Z |) Z | rec(o))

Discard the first register to create the desired ancilla.

[Berry et al. 2018]

Page 31/31

