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Abstract:

Quantum generators are crucial objects for understanding quantum systems. They encode all the information required to predict
the evolution of closed (Hamiltonians) and open memoryless dynamics (Lindbladians). Additionally, they offer structural insight
into the noise affecting experimental implementations of quantum processes.

In this talk, we will discuss the definition of continuous-time random unitary evolutions characterized by stochastic Hamiltonians,
showing mixing properties and efficient convergence to the uniform measure over the unitary group. We will then consider the
problem of embedding a quantum map into a Markovian evolution, presenting a scheme to extrapolate the full description of the
Lindbladian that is the best fit for the tomographic measurements of any (noisy) quantum channel.

Finally, we will introduce a new bound on quantum operators generated by arbitrary time-dependent Hamiltonians by leveraging
a correspondence with binary trees structures.
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Motivation —why studying quantum generators?

Implementing ‘more accurate’
quantum operations (gates)

Black holes: information scramblers?
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Motivation —why studying quantum generators?

Black holes: information scramblers?
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Closed system: Hamiltonians

* Hermitian operators

* Solution of the Schrodinger
equation

* Encode everything about the
physics of the system

* Many properties are derived
from the spectral gap

A 4/78
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Closed system: Hamiltonians Open system: Lindbladians

memoryless process only

* Hermitian operators

ABy+

» Solution of the Schrodinger
equation

* Encode everything about the

physics of the system
Markov property:

* Many properties are derived
from the spectral gap P(X:vs=y|Xe. =t¥n,.o -, Xe, =11) =P(Xe_1s =9 | Xi, = yn)

******* ~N

quantum Markovian _  quantum map forming a

channel one-parameter semigroup
4 M(t+s) = M(t) o M(s)
i AH) zy \_ )
;LO " ' 5/78
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Closed system: Hamiltonians Open system: Lindbladians

memoryless process only
E %Elbhu

Lindblad master equation

1
L(p) :==ilp, H + {Jale —5 (JlJap+leJa)} .

* Hermitian operators

* Solution of the Schrodinger
equation

* Encode everything about the
physics of the system

* Many properties are derived
from the spectral gap

Jo Jump operators

A > Then M(t) = e** is a quantum Markov
process (and in particular at CPT map at any
> A
i AlH) 2y timet)
;‘.0 — ) 6/78
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Outline of the talk

o Continuous-time random Hamiltonians and mixing properties
o Fitting data to Lindbladian and noise characterisation

e A new bound on Magnus expansion with binary trees

7178
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Continuous-time random
evolution of a closed system

Brownian motion A real-valued stochastic process By, with ¢ € [0,00), is called Brownian
motion if
P IO S R =
L e R (1) Bo =0,
- -'l.'.'-I.. "."o.i;l -'-.
o @S0, » a 'i.:.’.cy.‘.l.. F . . o
LN ¥y e ey » o8 S ..__.:'- ., (2) B has stationary increments, i.e., for s <t, By — B, 4 B;_g,
o B o E, aEs o v a%e .::.'D
LT g hgare . A y :
AU T n':.'_'» et (3) B has independent increments, i.e., for all 0 < t; < --- < t,,, the incre-
.- 'e’.l: (] A e e Lo 4
P SR TR LM i.;: ments
e e - 11 - "" :'..'.c 'lil:: t:l
'.':'="'$°"'-'"-'.5"', Pos & *an ™ B, — By, Bt —B:y, ..., By, —B:,
b 1 v W5 e 3 5' - ': ‘!'-: - e :
e DA N ;:'f-_f“;. Cl 5 are independent,
> 4 a -
o e 'if.'.'t_' n:“ ;'§ -
n.ll {:'. Ir" .:'t. ". - : >
e e G, (4) for all 0 < s < t, By — By ~ N(0, — ),
a .'l"" S - .-..::':":.:' * .:'.5-‘:%-%'.:' :i.!

(5) the paths ¢t — B; are continuous almost surely.

8/78
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Brownian motion... on the unitary group

A process U; on the unitary group U(N) is called Brownian motion if the
following conditions are satisfied:

(1) UO = ]l:

(2) For any time ¢t > 0, the increments are stationary, i.e., for any At > 0, the
increment UH_A,:UJ is equal in distribution to Ung .

(3) Forall 0 <ty <ty < ---<t,, the (left) increments

Gl S (7 o Y/ )

n"tn—1

are independent,

(4) The paths t — U, are continuous almost surely.

9/78
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Brownian motion... on the unitary group

u(N) ={X eC¥*N. X = —XxT}.
Construction on U(N)

Inject the differential of Brownian motion from ia product integral of the
exponential map

1 .
’ 1
Ui = lim H exp { E(Hfﬂt = H(f—l)At} Uo -
=t/ At

In more physical terms:

Hoar=Y |0 +i)_ AP géfg;))
e€ R I

Some interaction Graph

10/78
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Brownian motion... on the unitary group

Construction on U(N)

Inject the differential of Brownian motion from u(N) via product integral of the
exponential map

U; = lim H exp{—(Hfm (e— l)At} Uo .
e=t/At

In more physical terms:

e€ R I

/ We assume the increments satisfies \
(e;p) | _
g [e40] =o,

E (620 €6 4)] = — 1 Gt Berw ik

where a > 0 and k is the Killing metric tensor

.

K = —2°Tr(ALA,).

4

11/78
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Home > Communications in Mathematical Physics > Article

Mixing Properties of Stochastic Quantum
Hamiltonians

Published: 25 July 2017

Volume 355, pages 905-947,(2017) Cite this article

E. Onorati, O. Buerschaper, M. Kliesch, W. Brown, A. H. Werner & ). Eisert 9
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Mixing properties - what do we mean?

In the context of stochastic processes,

mixing = reaching the fixed point/stationary state, "forgetting " the initial point

— In our context, it means approximating the uniform Haar measure
over the unitary group.

Definition: Haar measure

The Haar measure is the unique measure that is is left- and right-invariant,

IJHaar(B) = UJHaar(UB) = HUHaar (B'UD),

for any v € U and Borel set B of U

13778
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Mixing properties - what do we mean?

In the context of stochastic processes,

mixing = reaching the fixed point/stationary state, "forgetting " the initial point

— |n our context, it means approximating the uniform Haar measure
over the unitary group.

Definition: k-th moment operator Definition: approximate unitary k-design

The k-th moment operator M, :f on L(H®*) with respect Let p be a distribution over the unitary group U(N).
to a distribution g on U(N) is given by Then p is an e-approzimate unitary k-design if
k k
X  M¥(X) == E, [US* X (U)®] M — Mfiaa ||, < e

14 /78
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Main result: mixing properties of stochastic Hamiltonians

Let U; be a unitary Brownian motion. Then, for any run time ¢ > T with
T = 850[log,(4k)]2d?k°k3Y/ 12D g ~lnkn (d/e),

U, is an e-approximate unitary k-design.

15/78
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Proof ingredient 1 - relate to random
quantum circuits

' Random sequence m

| Fe N 7 N\ )
[
||MBM(At) = MHaar - = 1-A (mBM(At)) (1 — ”Mcircuit(Haar) = MHaar OO) p UU D L—J[] [: D
ER & (1@
| — 7 \D J J xE N / D
| gl gz e g’m xr

Then, use previous result! for random circuits:

k k 1
1 — HM : M ) >
H =
( circuit(Haar) oo/ = 425n[log,(4k)]? d2 kS k3-1/1n(d)
'F. G. S. L. Brandao, A. W. Harrow, and M. Horodecki. Local random quantum circuits are approximate polynomial-designs. Comm. Math. Phys 16 /78
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( ‘We assume the increments satisfies \

E g% =o,

Proof ingredient 2 — identify the E 6% 674" | = — &g Ot Seer Wb
k-ind epend ent LO_C_ngap where @ > 0 and « is the Killing metric tensor

\ Ky = —2d°Tr(AL A,). )

Lemma: relating local and global gap

pr=1

17 /78
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Proof ingredient 2 - identify the
k-independent local gap

Lemma: relating local and global gap

R

5 (i) ~ 22 (4,20~ [ S it (| et

=1

C(ﬂ'k.,k) is the Casimir element, the object at the center of the universal enveloping algebra of u(N)
in the k-tensor representation

18 /78
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Proof ingredient 2 - identify the
k-independent local gap

Lemma: Casimir gap

Let Zj be the set of irreducible representations occurring in 7 and let v(m)
denote the multiplicity of each such representation 7. Then

C(ﬂ-kuk) = @ c(ﬂ-)]ldim('rr) & nv(‘rr)a
wELy

where

e =0 ifr>~mn,
c(m) = N Z(’\z i 2)(14_1)@,3')\3' =d=1 if 7~ g,
1,7

> 1 otherwise.

In particular, the spectral gap of C(my %) is independent of .

19/78
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Proof ingredient 2 - identify the
k-independent local gap

Dynkin label of a
Young diagram

Lemma: Casimir gap

Let Z) be the set of irreducible representations occurring in 7y, j and
denote the multiplicity of each such representation 7. Then

1=(1,21)

where
— (0 iy =2 g,

1
c(m) = N Z()\{ H- 2)2‘,3‘/\_; O i e P

> 1 otherwise.

In particular, the spectral gap of C(7 %) is independent of k.

Cartan matrix
20/78
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Decoupling of quantum systems = "the task of approximately bringing a quantum mechanical
system into a tensor product state with its environment”

Distribution
jprover U

System A System B

PAE

System E

Main result 2: fast decoupling with stochastic Hamiltonians

T :84 — Sg CPT map. 74 Choi-Jamiolkowski isomorph of 7.
Then, for run times ¢ > ¢n log®n and for large enough n

] 1/2
} < 4 500 . 9—H2(A|B)-—H2(A|E),
1 poly(n)

E{ |7 (Vi past]) 75 @ ps

21/78
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Application: black holes information paradox

Black holes are the fastest scramblers in
nature and take logarithmic time to
scramble information? (or non cloning-
theorem is violated)

i
I
e
o
L,

-
-
'LL

2Patrick Hayden and John Preskill. Black holes as mirrors: quantum information in random subsystems. Journal of High Energy Physics, 2007 22/78
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Application: black holes information paradox

Black holes are the fastest scramblers in
nature and take logarithmic time to
scramble information? (or non cloning-
theorem is violated)

Our work:

(i) Model block holes naturally with a random,
continuous-time evolution.

(ii) Aligns with the prediction of log time
scrambling, since we attain the Pauli mixing —»
condition.

= e (7)™ 5
=
i

rﬁ )

o
-

/ par quantum state where subsystem E shares m Bell pairs with A, and A is\
otherwise mixed

v = #qubits emitted as Hawking radiation — #qubits of system M.

The scrambling statement

E,
{ 5

} < VAT F dme

‘TfA\B (UA PARUL) | > ® pr

vs satisfied in time ¢ = O(logn). /

2Patrick Hayden and John Preskill. Black holes as mirrors: quantum information in random subsystems. Journal of High Energy Physics, 2007 23/78
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Outline of the talk

o Fitting data to Lindbladian and noise characterisation

24 /78
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The quantum embedding problem

Given a quantum map, is it compatible
with a Markovian evolution?

That is, does some Lindbladian L exist so
that M = el

Pirsa: 25040123

Quantum Channel

8.72 9.66 0.37 0.84
0.62 0.17 .81 0.8
9.41 9.63 0.35 0.49
0.67 ©0.84 0.34 0.29

tomographic snapshot

b time

Page 26/81
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The quantum embedding problem

Given a quantum map, is it compatible
with a Markovian evolution?

That is, does some Lindbladian L exist so
that M = e’

Home > Communications in Mathematical Physics > Article

The Complexity of Relating
Quantum Channels to Master
Equations

Published: 04 January 2012
Volume 310, pages 383-418,(2012)  Cite this article

Download PDF &

@ Access provided by Technical University of Munich, University Library

Toby S. Cubitt [, Jens Eisert & Michael M. Wolf

Pirsa: 25040123

9.72 9.66 0.37 0.84
0.62 0.17 .81 0.8
9.41 9.63 ©.35 0.49
0.67 9.84 0.34 0.29

tomographic snapshot

b time

The problem is NP-hard in the
system dimension!

... but still efficient in the required
precision of the embedding!

Page 27/81
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( Yuantum

the open journal for quantum science

Fitting quantum noise models to tomography
data

Emilio Onorati'?, Tamara Kohler'3, and Toby S. Cubitt’

'University College London, Department of Computer Science, UK
“Technische Universitat Mlnchen, Fakultat fir Mathematik, DE

‘Instituto de Ciencias Matematicas, Madrid, ES

Published: 2023-12-05, volume
Eprint: arXiv:2103.17243v3

Design a scheme that:

Doi https://doi.org/10.2

» does not require any knowledge of the master equation nor interaction
system <--> environment

Citation: Quantum 7, 1197 (2

> low resource-demanding — a single snapshot suffices

» returns full description of the Lindbladian

_/

27 /78
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( yuantum

the open journal for quantum science

Fitting quantum noise models to tomography
data

Emilio Onorati'?, Tamara Kohler'3, and Toby S. Cubitt’

'University College London, Department of Computer Science, UK
“Technische Universitat Mlnchen, Fakultat fir Mathematik, DE

“Instituto de Ciencias Matematicas, Madrid, ES

Published: 2023-12-05, volume 7, page 1197
Doi: https://doi.org/10.2233
Citation: Quantum 7, 1197 (202 m given: one or a few snapshots of a quantum channel, M,..., M,

m retrieve the Lindbladian that best approximates them

m ...or alternatively measure the non-Markovian component in terms of white
noise addition

m Do so by casting a with a convex-optimisation task whose constraints are
the necessary and sufficient conditions for a Lindbladian generator®.

28 /78
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Ingredient 1: convex optimization

standard form

minimize  fy(x)
subject to fi(x) <0, -
(ak,x)=bk k=1,...,m

where fy, f1, ..., f, are convex functions.

A fundamental property of con- —

solution
b

vex optimisation problems is that

local minimum = global minimum

29/78
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Ingredient 1: convex optimization

standard form

minimize  fy(x)
subject to fi(x) <0, j o
(ak,x):bk k:].,...,m

where fy, f1, ..., f, are convex functions.

Candidate
solution

Global minima

A fundamental property of con-
vex optimisation problems is that

local minimum = global minimum

30/78
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Ingredient 1: convex optimization

I » allows us to include an error tolerance parameter ¢

q the scheme can handle tomographic inaccuracies

# the scheme is efficient in £ for fixed Hilbert space dimensions

31/78
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Ingredient 2: necessary and sufficient conditions for Lindbladian generator

Physical Review Letters

s

L ® p

Highlights Recent Accepted Collections Authors Referees Pi

ACCESS BY TECHNICAL UNIVERSITY OF MUNICH, UNIVERSITY LIBRARY

Assessing Non-Markovian Quantum
Dynamics

M. M. Wolf'-2, ). Eisert34, T. S. Cubitt>, and ). I. Cirac'

32/78
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Ingredient 2: necessary and sufficient conditions for Lindbladian generator

The natural basis representation of £ is the d? x d? matrix defined as
Lij k). em) = Tr [ |en)ejl L(Jee)em])].
L’ is hermiticity-preserving, that is, L’|vT) = (L'|v))T for all |v).
A (L)' is conditionally completely positive, that is,
wy (L) wy >0,
where w; = (1 — |w)w]).

B (w| L = (0|, which corresponds to the trace-preserving property.

33/78
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Ingredient 2: necessary and sufficient conditions for Lindbladian generator

rewritten in terms of the Choi-representation

7(£) = d(L®T)(lw)wl]) = (L')'

7 is hermitian

B conditionally completely positive condition:
w; Tw; >0,
where w; = (1 — |w)w|).

trace preserving condition: || Try [7]|| = 0 in any matrix norm

34 /78
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Core algorithm: single snapshot

Algorithm 1: Retrieve best-fit Lindbladian

Input : matrix M positive real number £, positive integer myax
Quantum Channel Output: L closest Lindbladian to m-branch of log M such that

M—expL||p <ceis
minimal over all 1t € {—Tmax,--.,0,..., Mmax } <%
Go « log(M)

. x—d? ;
for G < Go +2mi)y _ m; P; (branches of Gy) do
Run convex optimisation programme on variable X (m):

| L=}
¥

subject to X (1) hermitian

minimise HX (m) — LT,

S wy X (), >0 .Condlt.lon fora L|nd.blad|an
852 07 65 4B | Tr, [ X ()], =0 in Choi representation X

0.67 ©0.84 0.34 0.29

if |[M —exp X"(m)||. < ¢ then
tomographic snapshot S‘_O[‘C X (Fﬁ)
distance(m) « ||M — exp Xr(ﬁi)”F
end
end

return L = XT(m’) for m’ = argmin {distance(rm)}

35/78
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Quantum Channel

b time

Quantum Markovian
Channel exp(Lt)

b time

Pirsa: 25040123

Core algorithm: multiple snapshots

Algorithm 3: Retrieve best-fit Lindbladian for multiple snapshot

Input : (d* x d?)-dimensional matrices M, ..

positive real number &, positive integer m,,

|M. — expte L||p < for all ¢

for G5, « G§ + 2ni Z;{;l m; P (branches of Gy) do

Run convex optimisation programme on variable X (m):
minimise 3 ||t X (1) — (G&)" ||
subject to X (m) hermitian
w) X(Mw,; >0
1Ty [X ()], = 0
if || M. — expl, XF(m) ‘1.. < & Jwr @i = 1,004 \ then
Store X (m)
distance(mt) « > __
end

M. —expt. Xr(ﬁl)”F

end

return L = X" (nt') for m’ = argmin {distance(sm)}

..My , positive real nu

Output: L Lindbladian minimising 5> y Ite L — log M. || ;- such that

Page 37/81
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Simulation with Bl s
synthetic data =
E
2
Z 090
3
g 088
g 086
E
g

Fidelity algorithm vs ground truth
CZ gate

0 1000

2000 3000
Random samples

4000

5000

Pauli basis

Pirsa: 25040123

Noise breakdwon in Pauli basis

canonical Hamiltonian noise

= l . [ - 0.07
i h f
™ - 1 i [ | . 0.06
- [ I L
n - " 0.05
o - | III I
el - 0.04
w-1 | [
< -0.03
37 =
=1 I 4 “ I -0.02
o [
arc -0.01
= -
CRUE R R LU L L U - 0.00

0 3 6 91215182124 273033 3639 42 454851 54 57

snapshot

Pauli basis

151413 12 1

1 i i 1 i i 1
0 3 6 91215182

Top Jump operator 1

0.8

-0.4

-0.2

i i 1 i i ) i il I i i ) | = 040
12427 30 33 36 39 42 45 48 51 54 57
snapshot

Page 38/81
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Math challenge 1: the matrix logarithm

» let T be a d? x d? matrix
» let {A1,... g2} denote its eigenvalues (all different and non-degenerate)
» let ¢;, rj the respective left and right eigenvectors of A; such that (¢;|r) =

Then the 0-branch of the matrix logarithm of T is uniquely defined as

d2
Lo = log(T) =) log\; Xl
J=1

the m-branch for m € Z¢ is then
d2

L= Lo+ > m;2mi )4

Jj=1

38 /78
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Math challenge 1: the matrix logarithm

» let T be a d? x d? matrix
» let {A1,... Ay} denote its eigenvalues (all different and non-degenerate)

» let ¢;, r; the respective left and right eigenvectors of A; such that (¢;|r) =

Then the 0-branch of the matrix logarithm of T is uniquely defined as

d2
Lo = log(T) =) log\; |rX¢)l;
J=1

e B

the mi-branch for m € Z¢ s then m; = 0 (22""”'”) suffices to reach the optimal in
5 convex optimization?
d
Ly = Lo+ ) m;2mi |r)e]. Heuristically, m = +1 suffices (low noise

=1 frequencies)
\ J

3Leonid Khachiyan and Lorant Porkolab. “Computing integral points in convex semi-algebraic sets”. In: Proceedings 38°
Annual Symposium on Foundations of ComputerScience. IEEE. 1997,
39/78
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Math challenge 2: Perturbations and degenerate spectrum

perturbation E

/\

hermiticity-preserving
operator A

eigenvalue A
multiplicity=3

eigenvalue A*
multiplicity=3

eigenspaces of A

and \*

admit basis of

> hermitian-related
vectors

h 4

N

Pirsa: 25040123

perturbed operator

M=AN+E

*

A-cluster

A*-cluster

eigenvectors of
cluster-subspaces:
hermitian-related
structure is broken

Page 41/81
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Math challenge 2: Perturbations and degenerate spectrum

Scenario 1: consider E = e( [wy)(wi| — |wa)(ws| + |ws)(ws| — |wa)¥wal)

where wy, wa, wa, wy are all self-adjoint vectors with wq and w» spanning the
eigenspace of 1 and ws, wy spanning the eigenspace of -1

log(X + E) has eigenvalues &, —¢,im —e,im + & (up to first order in €) with
respect to eigenvectors wiy, wp, w3, Wy

Lindbladian retrieved from convex-optimisation approach is
-’ L' = e|wi)wi| — € |w2)we| + € [ws)ws| — € [waXwa

# e =T X

Pirsa: 25040123

Scenario 2: consider E = &( |wy)(wi| — [wa}(wo| + |ws X ws| — [we X we|)

where ws and wp are hermitian-related vectors spanning the eigenspace of -1

log(X + E) has eigenvalues e, —¢,im — ¢,imr + & (up to first order in ) with
respect to eigenvectors wi, wo, Ws, Wg

—
—

Lindbladian retrieved from convex-optimisation approach on

m = (0,0,0,—1)-branch is

L= elwi)wi| — e |wo)we| + im [ws)(ws| — im |we)ws|

el ~ X v

Page 42/81

41 /78



Pre-processing algorithm

A hermiticity-preserving
with degenerate spectrum

convex-optimisation
programme

42 /78
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{with degenerate spectrum

%

A hermiticity-preserving

l

tomographic snapshot
M="ATF

|

Pre-processing algorithm -

randomizing over

hermiticity preserving bases

convex-optimisation eigenvalues FAIL
programme are set =~ 0

randombly sample repeat “many times”
from this set

F

retrieve the set of
hermiticity-preservig basis
spanning the invariant subspaces
of the A-cluster and A*-cluster

detect cluster detect cluster
around some A around A*

carry this out
for every cluster

Page 44/81
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Pre-processing algorithm -

A hermiticity-preserving ‘ randomizing over

with degenerate spectrum

hermiticity preserving bases

_{

tomographic snapshot L' with i
M=A+E expl’ =~ M

convex-optimisation
programme

logarithm L = log R

use this basis as new eigenvectors
for the invariant subspaces
of the A-cluster and A*-cluster

4

create operator R

randombly sample
from this set

4

O repeat “many times”

retrieve the set of
hermiticity-preservig basis
spanning the invariant subspaces
of the A-cluster and A"-cluster

Pre-processing

carry this out
detect cluster detect cluster for every cluster

around some A around A*

Page 45/81
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The theoretical guarantee under the hood

Theorem: Stability of the hermiticity-preserving structure

Let A be an hermiticity-preserving map and M = A + E its perturbed version.

If A is a complex and n-degenerate eigenvalue of A, then there exist a set of basis |

vectors {w;};_; spanning the right invariant subspace of M with respect to the

A-cluster and a set of basis vectors {w,,-},.zinJr1 spanning the right invariant

subspace of M with respect to the A\*-cluster such that

= O(IXll1Eally + IYall Iz ll;)  fori=1,...,n

.I.

E>; is a submatrix of E under a basis transformation embedding X,
q into a unitary for the spectral resolution of M, ‘mixing’ the invariant
subpaces of the A-clusters with its complement

—} O(II%ly 1Bt lly + 112l [ Ezyl,) is “small”

45/78

Pirsa: 25040123 Page 46/81



Outline of the talk

e A new bound on Magnus expansion with binary trees

46 /78

Pirsa: 25040123 Page 47/81



Can we leverage recursions and fractals to express

time-dependent Hamiltonian evolutions?

Raffaello — The School of Athens a fern

47 /78
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Recap: time-independent Hamiltonian evolution

Schrodinger equation: i A (t) = H Y (t).

Solution: 1(t) = UMW) with U(t) = e 7
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Recap: time-dependent Hamiltonian evolution

Schrodinger equation: i A (t) = H () y(t).

L

Solution: ¥(t) = U(t)yY(0) with U(t) = o7 H(B)At
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Recap: time-dependent Hamiltonian evolution

Schradinger equation: i A (t) = H (t) y(t).

i i
Solution: Y(t) = UY(t) with U(t) = e P& ——p U(t) = Texp (_E fo H (‘r)dr)
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Recap: time-dependent Hamiltonian evolution
Time ordering operator T [H (t)H (t;) - H(t,)] = H(t;, )H(¢;,) - H(¢;)

where t;, >t;, > > t;
Schradinger equation: i A (t) = H (t) y(t).

i t
Solution: Y(t) = UY(t) with U(t) = e P& —_— U Xp (_E fo H(I)dr)
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Recap: time-dependent Hamiltonian evolution

Schradinger equation: i A (t) = H (t) y(t).

Solution: Y(t) = U(t)p(t) withU(t) = eg (t)dt —_—

{ U(t) = exp(M(t)) where M(t) is the Magnus Expansion ]

The Magnus expansion can be written as a series M(t) = ¥ ,—,M,(t)

t

Mit) = — [ H(t)dt,

(ih) Jo
t t
My(t) = 2(%)3/0‘ dtl/ﬂ dt; [H(t1), H(t2)],
M;(f): ﬁﬂ df]./(;tdf_lh/l: -df;([H(t]),[H(t_))jH(ti)H + [H(ti}'l[H(fg),H(fl)H)‘

t t ta ty =
Mit) = e [ oo [ e [ [ an ([0, B )] HO) ¢ (HG), [[H), )], BE]] + (o), [He), [Hea), B + (), (1), (1), 1)),
q The expression for higher n becomes increasingly complex
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Recursion formula for the Magnus expansion  (D.P.Burum, Phys. Rev. B, 1981)

Define the Dyson term

LG t £
Dn = Wfﬂ dtl foldtz-..fo dtn H(tl)H(tz)"'H(tn)

Then, the n-th Magnus term is defined as

n 1 . , .
M, =D, — Zk—1FQn’k where Qn,k = Eh+1’z+'"+jk Mlejz ---M}-k withji +j+ -+ jr=n

k-composition of n
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Recursion formula for the Magnus expansion  (D.P.Burum, Phys. Rev. B, 1981)

Define the Dyson term

it t tn—
Dn = (i_h.)n f{) dt‘]_ fﬂl dtz e fo 1 dtﬂ H(tl)H(tz) --,H(tn)

Then, the n-th Magnus term is defined as

L | _rn :
M, =D, — Zk = Qni where Qni = Xj 4j,++j, MjyMj, - Mj, withji +ja+ -+ ji =n

k-composition of n

The number of composition grows exponentially, - Can we stop at some point ("truncate") and
#compositions = 2" still obtain a "good" approximation?
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Mathematical layout: full binary trees

Figure 1: A full binary tree with 5 leaves
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Mathematical layout: full binary trees

leaves Afull binary tree has

- asingle root

- nodesin hierarchical structure

- every node has either O or 2 successors

node
- every node has one single parent node (except the
root root)
Figure 1: A full binary tree with 5 leaves - anode without successors is called a leaf ’

‘]'n : set of all trees with n leaves
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Mathematical layout: full binary trees

leaves

node

root

Figure 1: A full binary tree with 5 leaves

Binary tree naturally connects to nested commutators!

~ [y, 1], [[13: Ly], ls]]

Afull binary tree has

- asingle root

- nodesin hierarchical structure

- every node has either O or 2 successors

- every node has one single parent node (except the
root)

- anode without successors is called a leaf ’

‘]'n : set of all trees with n leaves

Page 58/81
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Mathematical layout: full binary trees

leaves Afull binary tree has:

- asingle root

- nodesin hierarchical structure

- every node has either O or 2 successors

node
- every node has one single parent node (except the
root root)
Figure 1: A full binary tree with 5 leaves - anode without successors is called a leaf ’

‘J'n : set of all trees with n leaves

Binary tree naturally connects to nested commutators!

N[[lljlz]’[[l&ld’lsh > /...butwestillhaveto )
account for the integrals!

[, [* e, e, [ ae, [ He)
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Integratlon with binary trees (A. Iserles, S. Narsett, Phylosophical Transactions of Royal Society, 1999)

Additional rules for subtrees:

) ) . "~ H, dt
1) Integration of a subtree: appending a singular node below the root of the l Jo Hrdty
associated tree.
T3
2) Commutation: integrate the right sub-tree as per rule 1), then join the two ki ~  [Hn, Jy Hedt

roots with a new node which becomes the new root.
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Integratlon with binary trees (A. Iserles, S. Narsett, Phylosophical Transactions of Royal Society, 1999)

Additional rules for subtrees:
1

) ) . "~ H, dt
1) Integration of a subtree: appending a singular node below the root of the l Jo Hrdty
associated tree.
T2
2) Commutation: integrate the right sub-tree as per rule 1), then join the two ks ~  [Hn, Jy Hedt

roots with a new node which becomes the new root.

— [ H.(k)dk = j: dpc[jh(h-),j“h dtg[h(fg)q]‘]!z dt;}h(tx)}],j: d.t‘i[[h(t,{),[:ldt,—,[h(tﬁ),[‘dt.;h(tf-,)]],fidtﬂ;(tﬁﬂ

Figure 4: A 7-leaves binary tree.
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Integratlon with bmary trees (A. Iserles, S. Narsett, Phylosophical Transactions of Royal Society, 1999)

Additional rules for subtrees:

1) Integration of a subtree: appending a singular node below the root of the
associated tree.

1 £
l ™~ J[] Hndtl

T2

2) Commutation: integrate the right sub-tree as per rule 1), then join the two K ~  [Hy,, [ H.,dt)]
roots with a new node which becomes the new root.

—_— yields expression for the
Magnus expansion ey H\\-

,ﬁlmr
/Illllll'

M) =S M) =3 3 a.,./ H, (k)dr, _

n=1 n=1reT,

61/78

Pirsa: 25040123 Page 62/81



Integratlon with binary trees (A. Iserles, S. Narsett, Phylosophical Transactions of Royal Society, 1999)

Additional rules for subtrees:

1 £
g : . ~ H. dt
1) Integration of a subtree: appending a singular node below the root of the l Jn L at
associated tree.
T2
2) Commutation: integrate the right sub-tree as per rule 1), then join the two K ~  [Hy, J5 Hydt)
roots with a new node which becomes the new root.

—_— yields expression for the
Magnus expansion

M(t) = Z;\I (t) = Z Z QT,/ H (k)dk,

n=1 n=1reTn

Hro(r,70001) = [+ /I@_/ P@ f@

recursively constructed
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Integratlon with binary trees (A. Iserles, S. Narsett, Phylosophical Transactions of Royal Society, 1999)

Additional rules for subtrees:

1 £
g : . ~ H. dt
1) Integration of a subtree: appending a singular node below the root of the 1 Ju a1
associated tree.
T2
2) Commutation: integrate the right sub-tree as per rule 1), then join the two K ~  [Hy, J5 Hedt)
roots with a new node which becomes the new root.

—_— yields expression for the
Magnus expansion

o0

MO =3 M0 =Y 3 ar [ H(win,
1 0 I

n= n=1re7T,
HT:(Tl,Tz,....T,-) = [[H(h),/ H’rl]t-/ HT:]?"'-./ HTr]
0 0 0
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Unique representation through left-ordered subtrees structure

Ty

T3 T
T2

T

Figure 4: A 7-leaves binary tree.
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Unique representation through left-ordered subtrees structure

M(t) = iMn(f) = i 3 /tH,(K)dK,
n=1 n=17€Tn 0

+
Bernoulli numbers B,

Iserles, Narsett
n | fraction decimal

0 1 +1.000000000
B £ 1 +5 +0.500000000
— & , i
Qry,.ime) = Ol 2 1 +0.166666666
=1 3 0 +0.000000000
4 -3 -0.033333333
5 0 +0.000000000
1
6 5 +0.023809523
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Can we exploit the same
subtree structure to compute
simultaneously a; and the
integrals?

Unique representation through left-ordered subtrees structure

Iserles, Narsett
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A general truncation bound of the Magnus
expansion

Harriet Apel “!, Emilio Onorati ¥2, and Toby Cubitt!

'Department of Computer Science, University College London, UK
2Zentrum Mathematik, Technische Universitat Miinchen, DE
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Let u(r = (7, ..., 7)) be the crude integral defined by the

structure of 7, namely, _ _ T
Integration end points depend

Y +r on subtrees structure

t
M(T: (T1,...,T,,~))tn ::[ dk dtlfdtg... d\ T3
0 0 0 0

T2
71
Lemma 2 (Integral coefficient recursion formula). The integral coefficient of a
binary tree T € T,, with the sub-trees structure (1y,...,7,) is obtained by
1

p(r) = ;#(ﬁ)ﬂ-(’rz)“'#(ﬂ-) :
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Let u(r = (74, ..., 7)) be the crude integral defined by the

structure of 7, namely, _ _ T
Integration end points depend

Y ' on subtrees structure

t
M(T: (Tl,...,Tr))tn ::[ dk dtlfdtz dN T3
0 0 0 0 .

T2
71
Lemma 2 (Integral coefficient recursion formula). The integral coefficient of a
binary tree T € T,, with the sub-trees structure (1q,...,7.) is obtained by
1

p(r) = ;#(ﬁ)#(ﬁ) oo (7).

| ~ Sumover alltrees
with N leaves @

Page 70/81
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Let u(r = (74, ..., 7)) be the crude integral defined by the

structure of T, namely,

*

*

Integration end points depend
on subtrees structure

T =t o

t
.,Tr))tn Z:[ dk dtlfdtg... dtn
0 0 0 0

Lemma 2 (Integral coefficient recursion formula). The integral coefficient of a
binary tree T € T,, with the sub-trees structure (1y,...,7,) is obtained by

p(7) = —pm)m) ()

Theorem 4. Let vy = 0. Then the recursion formula for the tree coefficients v,
s given by

r!
r=1 J1veendr 1=1
composition(n,r)

n Br
(n+1) vy = Z |

.

Sum over all trees
with N leaves @

T3

T2

71

Page 71/81
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[ Theorem: foralln v, < 8- d; n 22" ] 55 =0.920075 Convergence radius

S Blanes, F Casas, J A Oteo, and J Ros.
Journal of Physics A (1998)

P. C. Moan, Techincal report, (1998)
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Theorem: foralln v, < 8- 5? n-292"

Tree coefficient Exact value Approximate value
11 1 1.00000000 x 10°
vy i 2.50000000 x 10~}
vy % 6.94444444 x 1072
vy W 1.90972222 x 102
Vs 12791793?57645794206102:?082114%0 5.54398148 x 10~
v st | 170621142 x 10
2 RS, | 559200339 x 10°
w | omummenen | omnzao
s | 6.99468651 < 10
| pmmasean | 261611070 x 10

Pirsa: 25040123

55 =0.920075 Convergence radius

1e9 Tree coefficients vs m(n) in Remark 6 (inverted)

—&— inverted vy
. 18 *5g"* 2"+ n?
6—
4 4
2 -
04

123456728 9101112131415161718192021222324
n

Page 73/81

72/78



Theorem: foralln v, < 8- 5’; n-22"

Tree coefficient

Exact value

Approximate value

2 1 1.00000000 x 10°
Vs % 2.50000000 x 107}
V3 % 6.94444444 x 1072
" e | Lo x 10
Vs l2791795?376467';2063502:?(]829814%330D 5.54398148 x 10~
Ve ST LBEAOSO IS bRARISED 1.70621142 x 10~°
V7 % 5.59200339 x 104
v TaRsosoesrRoTorayzs | 193482112 x 107
w | mamsmeen | ool x 10
- 182417979102859216931 261611070 x 10~

6972869259862210510848000

Pirsa: 25040123

Values

55 =0.920075 Convergence radius

1e6 Tree coefficients vs m(n) in Remark 6 (inverted)

—m— inverted v,
—— UB*o 2% n?

Values

04
T T
1 12

12345678 9101112131415161718192021222324

73/78
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... now back to the main result for arbitrary Hamiltonians!

Lemma 7 (Upper bound for Magnus term). Let H(t) be a general time-dependent
Hamiltonian with time evolution operator U(t) = exp(M(t)) generated by the

Magnus expansion M(t) = 3" | M, (t). Then operator norm of the n-th term
in the Magnus expansion is upper bounded by,

Z a, j':tHT(R)dﬁi

TeT,

”Mﬂ(t)“ == S 2"_1( hmaxt)nl/n

for all n > 1, where hy,., = maxtxem‘!_]{||H(t’)||_x}.

Page 75/81
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... now back to the main result for arbitrary Hamiltonians!

Lemma 7 (Upper bound for Magnus term). Let H(t) be a general time-dependent
Hamiltonian with time evolution operator U(t) = exp(M(t)) generated by the
Magnus expansion M(t) = 3" | M, (t). Then operator norm of the n-th term
in the Magnus expansion is upper bounded by,

< 2" hmt)@

t
01 = | X ar [ Hidn
1]
for all n > 1, where hpyay = maxt’eln.t}{”H(t’)”oo}-

TeT,

Page 76/81
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... now back to the main result for arbitrary Hamiltonians!

Lemma 7 (Upper bound for Magnus term). Let H(t) be a general time-dependent
Hamiltonian with time evolution operator U(t) = exp(M(t)) generated by the

Magnus expansion M(t) = 3| M, (t). Then operator norm of the n-th term
in the Magnus expansion is upper bounded by,

(5{ hmaxt)n
[Mn(t)]] o <4 I —

for alln > 1, where hpax = max; (o {1 H#')| . }-
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.. now back to the main result for arbitrary Hamiltonians!

Lemma 7 (Upper bound for Magnus term). Let H(t) be a general time-dependent
Hamiltonian with time evolution operator U(t) = exp(M(t)) generated by the
Magnus expansion M(t) = 3" | M, (t). Then operator norm of the n-th term
in the Magnus expansion is upper bounded by,

M), <4’

6{ hmax t) G
n2

for alln > 1, where hpax = max; ¢cpo,{||H ('), }-

>

Error truncation of
the Magnus
expansion atthe N
term

N 4 (8¢ hpaxt)VH?
(N) & Mtmax
HMM - M (t)” = (N4 1)2 1 —6¢ hmaxt

Exponential decay within the convergence radius 55
coupled with 1/N? factor
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Applications?

Pirsa: 25040123

Approximate time
evolutions

Efficient prediction
for
materials behavior
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Wrap-up

+» Explored mixing properties of random generators and spectral gaps

+ Presented a working algorithm for the quantum embedding problem
—overcoming the problem of degeneracies

% A new bound on the Magnus expansion with binary trees

... and there is more

¢ Uncomputably complex Renormalization Group flows | ' ﬁ— 1
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Thank you!

Technical
University
of Munich

i .
P
l i

1

Harriet Apel Tamara Kohler
PsiQuantum Stanford UCL

Albert H.erner Martin Kliéca Jens Eisert
University of Copenhagen Hamburg University FU Berlin

Oliver Buerschaper  Winton Brown
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