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Abstract:

Exactly solvable models have tremendously helped our understanding of condensed matter systems. A notable number of them
are "frustration-free" in the sense that all local terms of the Hamiltonian can be minimized simultaneously. It has been
particularly successful at describing the physics of gapped phases of matter, such as symmetry protected topological phases
and topologically ordered phases. On the other hand, relatively little has been understood about gapless frustration-free
Hamiltonians, and their ability to teach us about more generic systems. In this talk, we derive a constraint on the spectrum of
frustration-free Hamiltonians. Their dynamical exponent z, which captures the scaling of the energy gap versus the system size,
is bounded from below to be z >= 2. This proves that frustration-free Hamiltonians are incapable of describing conformal critical
points with z = 1. Further, by a well-known mapping from Markov processes to frustration-free Hamiltonians, we show that the
relaxation time for many Markov processes also scale with z >=2. This improves the previously known bound on the relaxation
time scaling of z >= 7/4. The talk is based on works with Rintaro Masaoka and Haruki Watanabe.
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Bound on the dynamic critical exponent of frustration-free
Hamiltonians and Markov processes

Tomo Soejima

Postdoctoral fellow, Harvard University

based on works with Rintaro Masaoka and Haruki Watanabe
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What do they have in common? 3

2D Ising Model at Critical Temperature

Toric code Figure from Savary, Balents 2017
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Collaborators

Ryotaro Masaoka Haruki Watanabe
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What do they have in common?

2D Ising Model at Critical Temperature

Toric code Figure from Savary, Balents 2017
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Gapless Hamiltonians are ubiquitous in nature

)

Gapless Hamiltonian (informal) |

A Hamiltonian whose ground state has gapless excitations

m Gapless excitations

Metal Electrons
Magnet Nambu-Goldstone bosons
Critical point Critical fluctuations
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Gapless Hamiltonians are ubiquitous in nature

Gapless Hamiltonian (formal) }

e(L) : the spectral gap at system size L.
The Hamiltonian is gaplessif e(L) —» 0 as L — o

Gapped Gapless

Metal, magnet,
critical point

Note: Often “gapless” means the rightmost scenarios, but we include both cases.
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Frustration-free Hamiltonians by example

Paramagnet H = ZiZi
Isingmodel H = ). Z;Z;1q

" — >
FM Heisenberg model [ —= _ZiSi - Sitq

= > o 2
AKLT model H = ZiSi - Sit1 +%(Si ) Si+1)

Toriccode H = ), A + Zp B,
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Frustration-free Hamiltonians by example

Trivial Paramagnet H = ). Z;
Discrete SSB Isingmodel H = ). Z;Zi1q
Continuous SSB FM Heisenberg model H — _Zis—}i . §i+1
— 1,=2> = 2
SPT AKLTmodel H =Y. S, - S;. 1 + E(Si -Si+1)

Topological order Toriccode H = Zs A + Zp Bp
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Frustration-free Hamiltonians 8

({Frustratlon -free Hamiltonian ~
Let H = );; H; with local H;. Then

H is frustration-free < = > The ground state minimizes H; simultaneously

- /

Remark:
Sometimes we impose H; = 0, in which case we can write H;|GS) = 0
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Commuting projector Hamiltonians are frustration-free

H =ZSS+ZAP,[SS,AP] =0
S p

Simultaneously diagonalize all terms
=> Frustration free

Note:
Stabilizer Hamiltonians for quantum
computation are all frustration free

Figure from Savary, Balents 2017
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Non- commuting frustration-free Hamiltonians

AKLT Hamiltonian
- - 1 - - 2 Tas
H = ZS:: *Sit1 +§(5i - Siy1) = priﬁ
i -

li'l

Non-commuting projector

Valence bond solid state
SO GHGEH GO GaoaD

1
——o =E(|Tl)—|lT))

Note:
All matrix product states admit frustration-free parent Hamiltonian
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Ferromagnet Heisenberg is gapless and frustration-free

H==) 5 Su
]

Ground states: spin § = %states Excited states: Magnons

W) = [1)SN
S™ | @)

T [/
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Magnon dispersion is gapless and quadratic

E(q)~q?
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Ferromagnet and antiferromagnet comparison

Ferromagnet Antiferromagnet
H==) 55 H=) 5§ S
i [
Frustration free Not Frustration free
+E(q) 1 E(@)
> >
q q

Quadratic Linear
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The aim of this talk

Gapless Frustration-free
Hamiltonians Hamiltonians

Frustration-free imposes nontrivial constraints on the spectrum

l

Frustration-free gapless Hamiltonians are not generic
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Outline

1. Dispersion relation for frustration-free Hamiltonians

2. Dynamic critical exponent for frustration-free Hamiltonians

3. Markov process as frustration-free Hamiltonians
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Quadratic dispersion in frustration-free Hamiltonians

Frustration free Not Frustration free
+E(q) t E(q)
P >
q q

Is this a generic feature in frustration-free Hamiltonians?
e Partial proofin 1D
* Partial proofinnD
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Partial proof for 1D case

1D FF Hamiltonian with § = %and NN interactions are fully characterized

RESEARCH ARTICLE | JUNE 18 2015

Gapped and gapless phases of frustration-free spin--
chains ©

Sergey Bravyi; David Gosset

We can use this to prove quadratic dispersion in 1D

Masaoka, TS, Watanabe, arXiv: 2406.06414
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Proof strategy in 1D

One of the ground states take the form

®o) = Q1 [0)z =1[0---0)

A magnon-type ansatz can be constructed as
zkm A—
W) = E ﬁ z | 20)

Evaluate the variational energy explicitly

(Uk|H[Ty)
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Partial proof in 2D

Consider nD FF Hamiltonian with § = % and NN. Then

(a) AH?P (d) A’V
L 4 -
l L G ——
- = «o—o—I

B C > ]

] i DD
T ?Csccr
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Partial proof in 2D

Min-Max principle |
If H > H, then E;, > E, J

() 0

> ——
I
T

If H?P is gapless, so is HP

|

We can use classification result for 1D

1

nD Hamiltonians also have quadratic dispersion

Pirsa: 25040115 Page 22/46



Nontrivial examples outside Bravyi-Gosset

A 1 ~AZ ~Z

i, - (9% s % 57

" 2cosh(J > reB,, On) : ‘
I

Three-body interaction goes
beyond the assumptions

* Magnon-type excitation is high-energy
* "Moving domain wall”-type excitation is low energy
* Can be used to create quadratic states

e S
~ -~
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Summary of Part |

Conjectured quadratic dispersion for FF Hamiltonians

Proved it for 1D S=1/2 NN Hamiltonians by explicit construction

Proved it for subclass of nD NN Hamiltonians on hypercubic lattice

The general version is still open!
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Outline

2. Dynamic critical exponent for frustration-free Hamiltonians

Pirsa: 25040115 Page 25/46



Dynamic critical exponent

Dynamic critical exponent ‘
Exponent z such that e(L) ~ L™% J
Frustration free Not Frustration free
tE(q) t E(q)
% >
q q
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We can bound dynamic critical exponent

Theorem (Masaoka, TS, Watanabe) 1

If the ground state subspace of FF Hamiltonian has critical correlations,
zZ =2

Remarks:

1. Critical correlations ~ power law correlations. To be defined
precisely later.

2. Shows FF Hamiltonian cannot give CFT, which has z = 1.

3. Goes beyond [Gosset, Mozgunov, 2016], which applied to OBC.
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Gosset-Huang inequality

Gosset-Huang inequality ‘
Jooseuang reaualty - p
(T|OL(1 - G)O, |T) €
e U < 2exp —gle —yly |
1O [T) [[|Oy | 2)] gere
g, g’: constants, €: gap size, G: Ground state projector
\C /
Remarks:
1. For unique ground state, LHS is the connected correlator

1

2. Heuristically, this means & ~ €2, as opposed to & ~ ™1

Gosset, Huang, PRL (2016)
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Proof of bound on dynamic critical exponent

Assume critical correlations
U0l (1 - GR)O.,|v
( IA o 3 /)| Q)
|O0=) ||| Oy [ )]

On the other hand, we can write

€
9> +e

2 exp (—g'la3 —y| ) = 2exp(—Q(L*~*/?))

Using Gosset-Huang inequality,
Q(L™?) < 2exp(—Q(L' /%))
This implies

z>2
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Example: Ferromagnetic Heisenberg model

Ground states: spin S = %states
S™ |P)

|

G is nontrivial

(04 (1 - )0, )| T} o
e - ere IS a Critical correlation
10219) [0, 9)]

Many other examples including MPS/PEPS uncle Hamiltonians
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Summary of Part Il

* A new bound on dynamic critical exponent from Gosset-Huang
inequality

* FF precludes generic behavior such as CFT

e Applicable to a wide range of gapless systems
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Outline

3. Markov process as frustration-free Hamiltonians
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We can bound dynamic critical exponent

Theorem (Masaoka, TS, Watanabe) 1

If the ground state subspace of FF Hamiltonian has critical correlations,
zZ =2

Remarks:

1. Critical correlations ~ power law correlations. To be defined
precisely later.

2. Shows FF Hamiltonian cannot give CFT, which has z = 1.

3. Goes beyond [Gosset, Mozgunov, 2016], which applied to OBC.
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Markov Chain Monte Carlo updates spin configuration
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Stochastic time evolution as a Markov process

([The transition rate Matrix W \
d
q.Pc = > Weerpe:
C!
\C : (spin) configuration, p.: Probability of a configuration )

Example: Glauber dynamics

A A A A

R

* Compute the energy of two

configurations
:> * Evolve according to relative

O probability of two configurations
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Auto correlation time and critical slow down

/[Autocorrelation time T (informal) } \
Autocorrelation function behaves as

t
A(t) = (0 Og)c < #e T

Given transition rate matrix W, and its spectral gap €,

\ T.=1/E /

Critical slowdown }

At critical point, T ~ L?

Can we understand how autocorrelation scales?
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Conditions on transition-rate Matrix

Transition rate matrix;: W

Equilibrium weight: w(C)
Locality: W = Z w;
Probability Conservation: Z(Wi)cc’ =30
C

Balance condition: Z Wee, w(C') =0
Cr

Detailed balance: W¢e, w(C') = W, .w(C)

Pirsa: 25040115 Page 37/46



Conditions on transition-rate Matrix

Transition rate matrix;: W

Equilibrium weight: w(C)

Locality: W = Z W;
i
Probability Conservation: Z(Wi)cc’ = [(]
C
Balance condition: Z Wee, w(C') =0
Cr

Detailed balance: W¢e, w(C') = W, .w(C)
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RK Hamiltonian: H = =S~ 1WS

Ground state: W) = S Vw(C) |C)

Locality: H = Z H;
i
Left frustration-free: (Wix|H; =0
Right-frustration-free: H;|Wzx) =0

Hermiticity: Hee, = Her

Rokhsar, Kivelson PRL {1998)
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Correspondence between classical and quantum problems

Equilibrium weight: w(C) Ground state: |Wrx) = Y NW(C) |C)
(.)an.oniqal Ground state
distribution
N hai Dynamics by
OV RK Hamiltonian

b N b~ 7

These time evolutions are governed by the same dynamics

|

Our dynamic critical exponent bound z = 2 applies!
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The bound for autocorrelation holds very broadly

Critical points

z (numerical)

References

Ising (2D)

Ising (3D)

Heisenberg (3D)
three-state Potts (2D)
four-state Potts (2D)
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2.1667(5) > 2
2.0245(15) > 2
2.033(5) > 2
2.193(5) > 2
2.296(5) > 2

Nightingale, Blote, PRB 62, 1089 (2000).

Hasenbusch, PRE 101, 022126 (2020).

Astillero, Ruiz-Lorenzo, PRE 100, 062117 (2019).

Murase, Ito, JPS) 77, 014002 (2008).

Phys. A: Stat. Mech. Appl. 388, 4379 (2009).
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Summary of Part Il

* Analyzed autocorrelation of Markov Chain Monte Carlo

 Mapped MCMC to FF Hamiltonians to bound critical slowdown

 Showed a new bound on classical algorithms from a quantum result
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The aim of this talk

Gapless Frustration-free
Hamiltonians Hamiltonians

Frustration-free imposes nontrivial constraints on the spectrum

l

Frustration-free gapless Hamiltonians are not generic
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Conclusion 45

Dispersion of Bound on Mapping to
frustration-free systems Dynamic critical exponent Classical statistical models

Canonical
distribution

Markov chain

(|OL( - 6)O, b)) ~

10.19)116}19)]

q Dynamics by
RK Hamiltonian

|

tE(q)

<+
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The bound for autocorrelation holds very broadly

Critical points

z (numerical)

References

Ising (2D)

Ising (3D)

Heisenberg (3D)
three-state Potts (2D)
four-state Potts (2D)
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2.1667(5) > 2
2.0245(15) > 2
2.033(5) > 2
2.193(5) > 2
2.296(5) > 2

Nightingale, Blote, PRB 62, 1089 (2000).

Hasenbusch, PRE 101, 022126 (2020).

Astillero, Ruiz-Lorenzo, PRE 100, 062117 (2019).

Murase, Ito, JPS) 77, 014002 (2008).

Phys. A: Stat. Mech. Appl. 388, 4379 (2009).
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Summary of Part Il

* A new bound on dynamic critical exponent from Gosset-Huang
inequality

* FF precludes generic behavior such as CFT

e Applicable to a wide range of gapless systems
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Conditions on transition-rate Matrix

Transition rate matrix;: W

Equilibrium weight: w(C)

Locality: W = Z W;
i
Probability Conservation: Z(Wi)cc’ =30
C
Balance condition: Z Wee, w(C') =0
Cr

Detailed balance: W¢e, w(C') = W, .w(C)
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RK Hamiltonian: H = =S~ 1WS

Ground state: W) = S Vw(C) |C)

Lecality: H = Z H;
i
Left frustration-free: (Wix|H; =0
Right-frustration-free: H;|Wzx) =0

Hermiticity: Hee, = Her

Rokhsar, Kivelson PRL {1998)
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