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Abstract:

The ground state of a bipartite quantum system resembles a thermal state from the perspective of an observer with access to
only one of the two regions. This observation has led to the introduction of the entanglement Hamiltonian, which has numerous
applications in quantum information and the study of quantum many-body systems.

This talk will explore two approaches to computing the entanglement Hamiltonian: one in the context of quantum field theories
(QFTs), focusing on the Bisognano-Wichmann Hamiltonian, and the other for free fermion models on a lattice, where connections

with algebraic Heun operators will be highlighted. Additionally, the relationship between the discrete and continuum cases will
be examined.
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Motivation

10> 2\ > Reduced density matrix:

PA =Trgp

> Since pa is positive semi-definite, we
can always write:

P o pacce

)
where H is defined as the

entanglement Hamiltonian (or
PA modular Hamiltonian).
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Motivation

Idea: viewing pa as a thermal state of
a system governed by a Hamiltonian ‘H
defined solely on A.

Applications:
e Computation of entanglement entropy:

Sa= —trapalnpa

® Ansatz for quantum state tomography:

pa(g) x e~ H(g)

® Connection with Unruh effect.
4 /25
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Computing H: QFT case

WUr
Setting: a 1 + 1d relativistic QFT. The \
region A is characterized by x > 0. U, is
the causal complement of B.

[Bisognano and Wichmann, 1975]

The modular operator A associated to the vacuum state €2 and the algebra of observable
A, of the right wedge U, is

|
11—

= X

A — e—27TK
where K is the Lorentz boost generator.
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Computing H: QFT case

Corollary

Using Tomita-Takesaki theory, the modular operator A can be related to the density
matrix as A = pgl ® pa. Therefore, we can identify

—2’}TKA —2TFKB

PA X € PB X €

where .
KA = / dXXToo(X), KB = —/ dXXToo(X)
xEA xEB

K=Ks— Kg = / dx x Too(x)

Note: K, is known as Bisognano-Wichmann Hamiltonian. We have the identification
H—25Ka:
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Computing H: QFT case

Alternative path integral approach [Witten, 2018]:
D @1 @2 o / D@e_SE[C)]/ qufe_SE[Q)f] _ f D Dd)e—SE[@]
| | 6(x,0)=d1(x) ¢ (x.0)=02(x) #(x,07)=¢1(x)
G(x,07)=d2(x)

We have ¢; = 0j g © ¢; a. Taking the partial trace amounts to ask ¢1 8 = @2 B.

pA[@LA: @2.,:4] — \/C)A(X-O-’-)_C)l‘,q(x) D(be_SE[QaJ] 0

d(x,07 )=z a(x)

The Hamiltonian interpretation of this path integral is a 27 rotation in the plane 7x. In

terms of the real time t = —i7, this is a Lorentz boots e~ 2K,
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Computing H: QFT case

Pirsa:

////////////¢ //// /////,/¢M 27 |
7 S ™ EE

Remark: This identification was made possible by the choice of region A and the
presence of a continuous symmetry group.

H = 27r/ dx xToo(x)
XEA
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Different geometries (CFT case)

Question: What happens for theories defined on a different geometry? What about a
different choice of subsystem A?

Example: Consider a CFT, on a finite interval (x, t) € [0, L] x R. The subsystem
A = [x0. L]. Let z = x + it and consider the following map induced by

. 7(z—xo) . £ \
sin T(Z+x0) ) /
2L
O

Reduced density matrix pa — thermal state on annulus. Back to original coordinates:

X

X0 X
_Ecos T COS 7

H = 2WL/5(X)T00(X)dX: B(x) = - sin 72
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Computing 7{: free fermions on a lattice

We consider the Heisenberg XX (or free fermions) model :
1
H = —§ZJ o an+1+anan+1 = —Zun (1+a;)
which using Jordan-Wigner transformation is mapped onto

H = ZJ (c c,,+1+cn+1cn) Z;u,,c Cn,

where {cm. ¢y} = {ch. ci} = 0 and {cm., c}} = dmn. To solve this model, it is convenient

to express the Hamiltonian in matrix form. o
— M1 Jl 0
H e b
H=clie. o =(d.fc) J=| o 2 b

10 /25
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Computing 7{: free fermions on a lattice

Idea: Diagonalize J
UJUT = diag(w1,ws,...,wn), UTU=1
Let by = (Uc)k = )_; Ukici, then
H=clJc=cUTUIUT Uc = wibjby
k

Observation: Favard's theorem states that three term recurrence are solved by
orthogonal polynomials. Since J is a tridiagonal matrix, the entries of U can be expressed

in terms of orthogonal polynomials: o
Uk; o P,-(wk).

Ground state: Let the vacuum state be denoted by |0) and wy < wi.1. Let K be the
largest integer k such that wy < 0, then the ground state |€2) is given by

) = bl ... b |0).
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Computing 7{: free fermions on a lattice

[Peschel, 2003]

The entanglement Hamiltonian for the ground state of a lattice free fermion model is

given by
o= Z h,-jc;rcj?
ijeA

where h is an |A| x |A| matrix given in terms of an |A| x |A| truncated correlation matrix C

1-C

h=1In (T) . Cp= (8 c;rcj €2) . 0

Sketch of proof: All higher correlation can be expressed in terms of two point
correlation. Wick's theorem — true for gaussian fermionic states. We can identify h using

tr(e *cl ;)
tr(e=*")

— C{'j_
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Computing 7{: free fermions on a lattice

Computing C: we have
Ci=(Q gl =" Ul
k<K
Observation: we have the issue that C is ill-conditioned.

10714

10—3 .

1075 -

1077 1

10—9 -

Eigenvalues of C

10-11 -

10—13 -

10-15 4

0.0 2.5 5.0 7.5 100 125 150 175  20.0
Index
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Computing 7{: free fermions on a lattice

[Eisler and Peschel, 2013] [Griinbaum et al., 2018] [Crampé et al., 2019]

If there exists a non-degenerate diagonal matrix X acting tridiagonally on the eigenbasis
of the one-particle Hamiltonian J, then there exists a region A and coefficients ;1 and v
such that [T, C] = 0, where

T = JX + XJ+ ud + vX.

Sketch of proof: The truncated correlation matrix can be factorized in terms of
projectors mx and ma onto the eigenspaces of J and X respectively:

G = Z UkiUj = TaTKT A
k<K

O

Two bases: one where J diagonal and X tridiagonal, one where J tridiagonal and X
diagonal. In two bases, T tridiagonal.

[T, 7Kk] = 0 = constraint on v, [T, ma] =0 = constraint on p.

14 / 25

Pirsa: 25040107 Page 15/26



Computing 7{: free fermions on a lattice

Remarks:

® In general, T is a tridiagonal

matrix, well-conditioned. /l I\ o

h=ao+aT+aT+..

® Very good approximation: 4%—-) w

h~ay+ a7
. o A O
® QOriginates from the work \\
[Slepian and Pollak, 1961] on time B A lo ,7‘[5‘)
and band limiting. \7L° ( .
® Generalizations: hyperplane c\\o

lattices, Distance-regular graphs.
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Computing 7{: free fermions on a lattice

Remarks:
® In general, T is a tridiagonal
matrix, well-conditioned. ® The pairs (J, X) are classified
(Leonard pairs). One-to-one
h=ao+aT+aT’+.. correspondence with g-Racah
polynomials.

® Very good approximation: e Diagonalizing 7 = algebraic Bethe

haag+aT anstaz.
® |n certain cases, 7 can be identified
® Originates from the work with differential Heun operator.
[Slepian and Pollak, 1961] on time
and band limiting. dw [y & € ]dw ofz—q _ o

dz? z z—1 ' z2—a] dz 2(z—1)(z — a)

® Generalizations: hyperplane
lattices, Distance-regular graphs.
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Continuum limit

© EH *» Hewm opevtor

I

A e C s
Lo o_o—:-;-“‘—u—‘-o-o N=12 q

A\_&\A N-=200 EHZ= BW Homil tonian

@
> p——o o—e N

Too(¥) free mods @Sy
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Continuum limit

Formal procedure for continuum limit: free fermions on a chain — free massless Dirac
fermions in a curved background.

= (n+ 1N Jy = NJ(X),  pn— Nu(x)

1 - - e
= ([ efr(x)y —ip(x) ), o] —
Cn — i (e Yr(x) + e Y L(x)) , o(x) / qr (x)dx

Space-dependent Fermi velocity vr(x), Fermi momentum gg(x) and dispersion relation

gr(x) = L arccos (u(x)/2J(x)), wq = 2J(x)cosqg — u(x).

e _\/4J — u(x

18 /25
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Continuum limit

This leads to 3

H = Z[J]Uc;rcj —+ | ve(x) Toolx)dx
iJ

N—oo 0

where ]
Too(x) = 5 [UR(x)(=id)er(x) = 0 (x)(=idx)ve(x) +he| .
Similarly, we find for the entanglement Hamiltonian based on the Heun operator T

Y a0+ a1 Tl ¢ TR, / BHeun(X)VF(x) Too(x)dx
ijeA e

[Eisler et al., 2019] [Bonsignori and Eisler, 2024| [Bernard et al., 2024]

In all cases studied, the factor Syeun(x) from the continuum limit of the Heun
operator matches the coefficient Scg7(x) predicted by conformal field theory (CFT) in
curved spacetime.

19 /25
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Example: Krawtchouk chain

Setting: Pair (J, X) = (5%, 57) where $* and 5% are (N + 1) x (N + 1) matrices from
an irreducible representation of s1(2) in the basis where S7 is diagonal.

H = ZJ ( CoCnt1 + cn+1cn) Zync Cn,
e %\/(n UG T7 Y Y N 5 S s s

Heun operator (A = half-chain):

7- — {SX:SZ}
- - wX(x)
| €os =2 — cos — X — Xo
3 eun =i = - - -
BHeun(x) = Berr(x) = sin X0 vr(xo)
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Pirsa: 25040107 Page 21/26



Example: Racah chain

).0 D2 0.4 0.6 0.8 1.0

_ (x —x0)(x+ x0 +x1 — 1)
(2Xo SR e 1)VF(X0)
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Outlook

Pratical applications Open questions:

® Provides a scheme to fix ap and a; e Diagonalization of T

in the approximation h ~ ag + a1 7 e ¢-Racah case and other

® (Bonsignori and Eisler, 2024) generalizations
Discretization of BW Hamiltonian
for new (almost) commuting
operator 7 for time and band
limiting?

® Proof for ag and a; without using
CFT argument.

¢ XY model, MVOPs.
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Thanks
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