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Abstract:

We show that Polchinski’s equation for exact renormalization group flow is equivalent to the optimal transport gradient flow of a
field-theoretic relative entropy. This gives a surprising information-theoretic formulation of the exact renormalization group,
expressed in the language of optimal transport. We will provide reviews of both the exact renormalization group, as well as the
theory of optimal transportation. Our techniques generalize to other RG flow equations beyond Polchinski's. Moreover, we
establish a connection between this more general class of RG flows and stochastic Langevin PDEs, enabling us to construct
ML-based adaptive bridge samplers for lattice field theories. Finally, we will discuss forthcoming work on related methods to
variationally approximate ground states of quantum field theories.
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Setting the scene

Latent Diffusion Models
Me: Can you make an and RG Flow

Latent Diffusion Models

image of a scientist
giving a talk about latent
diffusion models and RG
flow at Perimeter?

GPT-40 + DALL-E 3:

/@M O
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Setting the scene

Latent Diffusion Models
Me: Can you make an and RG Flow

image of a scientist
giving a talk about latent D

PERIMETER

Latent Diffusion Models

diffusion models and RG
flow at Perimeter?

GPT-40 + DALL-E 3:

How does this work?

How can we leverage
it for physics?
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Three Parts

Latent Diffusion Models

Exact RG as Stochastic Langevin Dynamics

Synthesis: Renormalizing Diffusion Models

/@M O
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Part 1

Latent Diffusion Models

()72 Q [cJNIC) )
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Basic problem

Want to sample image < p(image | text)

How do we learn p(image |text) and then efficiently
sample from it?

Idea: Use training set {(image,, text;)}.", and optimize pg
over 0 so that it approximates p

Want to parameterize pg so that it is efficient to
sample from it

/@M O



First tool: Fokker-Planck versus Langevin

Start with heat equation: %pt(:p) = Ap;(z) PDE

Related to Brownian motion: dz; = vV2dW, Stochastic ODE

Question: Given some py(x), how do we sample from pr(x)?

pO (w) heat ﬂOW - pT(IIJ)
sample l l sample
Lo » LT

Brownian motion
/AN O
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First tool: Fokker-Planck versus Langevin
Fokker-Planck: %pt(aj) = 0;(0'V () ps(x)) + 8;0"ps(x) PDE
Stochastic Langevin: dz; = —8;V (z;) dt + v/2dW, Stochastic ODE

Question: Given some py(x), how do we sample from pr(x)?

Fokker-Planck

po(z) > pr(z)
sample l l sample
Lo » LT

stochastic Langevin
O/ QA@N@® O
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First tool: Fokker-Planck versus Langevin

o, : :
ot pe(z) = 0;(0"V (z) pi(z)) + 0;0"pi()
po(ﬂ?) Fokker-Planck N pT(fB)
sample l l sample
T » LT

stochastic Langevin
0/ CA@N® O
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First tool: Fokker-Planck versus Langevin

.

1
) . (7) = = e~ V()

0 (z) = 0;(8'V (z) pe(x)) + 8;0"pe()

Fokker-Planck

po(z) > pr(z)
sample l l sample
Lo » LT

stochastic Langevin
0/ QA@N® O
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First tool: Fokker-Planck versus Langevin

.

1
) . (7) = = e~ V()

0 (z) = 0;(8'V (z) pe(x)) + 8;0"pe()

Gaussian DL
| &
Fokker-Planck
po(x) > pr(T)
sample l l sample
Lo » LT

stochastic Langevin
0/ QA@N® O
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Second tool: score-based sampling

Suppose we want to sample from py(z) = —- e~ V*(®

Define the score by sg(x) := Vlogpg(z) = —VVp(z) }independent

of A

Fokker-Planck: %pt(:c) = —V - (sg(z) pt(z)) + Ap(x) PDE

Stochastic Langevin: dz; = s¢(z;) dt + V2dW, Stochastic ODE

/@M O
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Second tool: score-based sampling

1
Suppose we want to sample from pg(x) = = e~ Ve(®)
6
Define the score by sq(z) := Vlogpg(x) = —VVs(x) } ndependen
Gaussian Do (:c)
] R
Do (LU) Fokker-Planck R pT(a:)
sample - Only need
i P the score!
L0 » ITT

stochastic Langevin
0/ QA@N® O
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Second tool: score-based sampling

1
Suppose we want to sample from pg(z) = — e~ Ve()
6
Define the score by sq(z) := Vlogpg(x) = —VVs(x) } ndependen
Gaussian Do (:c)
] 2
Do (LU) Fokker-Planck R pT(a:)
sample S Only need
i P the score!
L0 » IT

stochastic Langevin
O/ A@N® O
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Score-based diffusion models

9,
Idea: Consider flows

o Pu(@) = V- (2pu()) + Api(2)

(h&zrﬂmdﬁ+V6dmé

Let po(z) =p*(x)

[Song et al. ‘19]
[Ho, Jain, Abbeel ‘20]
[Song et al. ‘21]

converges to

1 1
Poo(7) = (27)3/2

Flow p;(x) and learn score s;(z) = Vlog p(x) by optimizing a
parameterized score s/ (x) over ¢

/AN O
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[Song et al. ‘19]
[Ho, Jain, Abbeel ‘20]

Score-based diffusion models [Songetal. 21]
0
Idea: Consider flows 5z Pt(®) = V- (zpi(z)) + Ape(z) | convergesto
. 1 L2
dzy = —x; dt + V2 dW; Poe(2) = oy o~ }lel

Let po(z) =p*(x)

Flow p;(x) and learn score s;(z) = Vlog p;(x) by optimizing a
parameterized score s’ (x) over ¢

2 pu() =~V - (lo + 25 (2)] pu(a)) + Ape(a)

Construct flows
dry = —[xy + 255, (x¢)] dt + V2 dW;

/@M O
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[Song et al. ‘19]

[Ho, Jain, Abbeel ‘20]

[Song et al. ‘21]

Score-based diffusion models

()

*
t

flow of true score s

Source: NVIDIA

/@M O
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[Song et al. ‘19]

[Ho, Jain, Abbeel ‘20]

[Song et al. ‘21]

Score-based diffusion models

()

*
t

flow of true score s

learn s¥(z) ~ s} (z)

Source: NVIDIA

/@M O
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[Song et al. ‘19]
[Ho, Jain, Abbeel ‘20]

Score-based diffusion models [Song et al. 21]

reverse flow of learned score s?(x)

O/ QA@ENO®O Source: NVIDIA
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[Hyvarinen ‘05]
How to learn a score

Minimize the Fisher divergence

F[sf(.:c)] = /ddmpf(flf) |Sf($) — Sf(w)lz
_ / dz p (x) |7 (2)]? — 258 (2) - 5(2)] + Ce
- / d pi(z) [|s¢(2)|? + 2V - s¢(2)] + C,

— Ew,\,p;(m)“sf (z)]* +2V - Sf(l‘)} minimize over ¢

/IO
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Score-based diffusion models: putting it together

1 2 *x., N

1. Sample N times from p*(x): ™% 2™<, ..., 2®

2. Sample N times from [0,T]: ¢1,t9,....tN

3. Flow samples using Ornstein-Uhlenbeck as: :1::1’1, ZL‘Z;Q, e zE;kJ’VN
N
. . . 1 * .1 *,7
4. Minimize L(0) = ~ ;:1 [|sf®_ (xp*)? + 2V - 8¢ () )}

mmmmm) Use learned score to approximately sample from p*(x)

/@M O
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State of the art

Latent Diffusion Models
Me: Can you make an and RG Flow

Latent Diffusion Models

image of a scientist =
giving a talk about latent e ]

i)

PERIMETER

diffusion models and RG
flow at Perimeter?

GPT-40 + DALL-E 3:

How does this work? /

How can we leverage
it for physics?

/@M O
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. [Wilson, Kogut ‘74] [Polchinski ‘84]
Basic setup

Euclidean scalar field theory on R¢, ¢:R% — R

Probability functional Py[¢(z)] oc e =519
RGscale A~ 1/¢

Exact renormalization group (ERG) flow equation:

A9 P[4 = F|Paldl, OPp[@] 6% Pa[g]

dA 5p ' Sddgp

/@M O



[Polchinski ‘84]

Exact Renormalization Group
Assume the source vanishes

, _ _ above the cutoff scale
Euclidean scalar field with a source: .\

ZA[J] — /[dé] B_é f (Q,T)d (‘Jb(p)ﬁb( p)(p +m )K (p2)+J(p)Q5(—’p))—Sint,A[qb]

e

Ka(p?)
Physics below the cutoff scale is 4
preserved under RG flow: 1
AL Z019] = Cp ZaL]
T £

/@M O
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L [Polchinski ‘84]
Exact Renormalization Group

ZA[J] /[dcb] ( (2 )d ¢(p)p(—p)(p* + m2)AaK§A(p ) +Aas“g[’<‘[¢]) e —SAle,J]

/

d Jeopardy question: Is there
_ _ a functional differential
* AdA ZalJ] = Ca ZalJ] equation for this quantity
such that % is satisfied?

/@M O
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Polchinski equation as a Fokker-Planck equation

Polchinski equation

. Py [¢] = / ddpAacA(pg) > INC)

dA 0N d¢p(p)op(—p)
(‘9CA(p2) )
+ [ atag 56(7)

Fokker-Planck equation

9
ot Dt

(z) = 8;0'pi(x) + 0 (0'V (z) pi(x))

/@M O
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Wegner-Morris equation as a Fokker-Planck equation

Wegner-Morris equation [Wegner ‘74] [Morris ‘95]

d
dA

1

~A— Palg] = 5

2

/ ddeAupD( N

6> Pa[g) o[ 95alg]
Do6(—p)  30(7) (5¢(—p) PA[qb]))

Fokker-Planck equation

9
ot Dt

(z) = az'aipt(fl?) + 5i(3iV(37)Pt(33)) p— [ = — log(A/AO)

/@M O

irsa: 25040095

Page 28/40



[Cotler, Rezchikov ‘22]
Functional generalization of optimal transport

Initial and final distributions: Pj[¢], Py[¢]

Transport kernel: TI[¢q, ¢o] Minimize

/ [dpo] T, p2] = Pilen], / d1| (61, d2] = Palera] | K] = / [d1] [dp2] 1[p1, 2] Clp1, P2

Cost: C: ¥ x % =R

Wasserstein-2 distance
Wz (Pl, .PQ) =

1/2
(Heri(l}{&) /[d¢1] [dp2] I[¢1, ¢2] /ddgg' dy By (z — 1) (¢1(z) — d2(x)) (o1 (y) — gbg(y)))

L RPARERNcoRE -
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[Cotler, Rezchikov ‘22]
RG flow equation

Distribution of interest: Py [¢] = Zl e—5al¢]
P.A

1 A
“Background” distribution: Qa[¢] = > e 25119
QA

Relative entropy: S(P|Q) = / d¢] P|¢]log(P[¢]/Q[¢])

/@M O
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[Cotler, Rezchikov ‘22]
Wegner-Morriscequation as a Fokker-Planck equation

wagﬁté'.bwtmpéanmr&ﬁt{w’é’gh%mmzm? .

) }3[¢ —j%A ]&?[é]
_BA?%RAL[mdz é %I‘dﬁﬂﬁ@ﬂﬂﬁégg@ 5‘/; Z@ ! 5¢ 6 qﬁ(A—p) PA[@]))

Relative entropy: S(P[|Q) = / do] P|¢|log(P|o]/Q[d])

Fokker-Planck equation

f”ﬁﬁﬁjﬁé OV (@ eDp e bT 1)

equatlon

o, QR_Q ﬂgw is a gradient flow with respect to the relative entropy!



Wegner-Morris equation as a Fokker-Planck equation

Wegner-Morris equation [Wegner ‘74] [Morris ‘95]

d
dA

1

~A— Palg] = 5

2

/ ddeAupD( N

6> Pa[g) o[ 95alg]
Do6(—p)  39(7) (59?5(—19) PA[qb]))

Fokker-Planck equation

9
ot Dt

(z) = 8;0'pe(x) + 0;(0'V (2) pr(z)) [y ¢ = — log(A/Ao)

/@M O
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[Carosso ‘19]
[Cotler, Rezchikov ‘22]

Reprise: Fokker-Planck versus Langevin icotier Rexchikov 23]

AT 6?Py[¢] I AL
Fokker-Planck: - Pl¢] = ; /d th(Ipl)(M(pw(_p) + 2550 )(5¢(_ )Pt[cbl)) FPDE

Stochastic Langevin: d¢:(p) = —B:(|p|) Z‘% dt + v/ B;(|p|) dn:(p) Stochastic PDE

Question: Given some Fy|¢], how do we sample from Pr[¢]?

Fokker-Planck

Pol¢) > Pr|¢]
sample l l sample
¢o(p) : : > ¢7(p)

stochastic Langevin

/@M O
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[Carosso ‘19]
[Cotler, Rezchikov ‘22]

Towards Renormalizing Diffusion Models icotir rexchitov 23]

Sampling from field theories is an essential operation in statistical and
guantum field theory

Field theories come equipped with canonical Fokker-Planck / Langevin
flows, namely their RG flows

We can leverage score-based diffusion models (and similar methods) to

build novel algorithms for sampling from field theories, exploiting their
RG flow structure

/@M O
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Overview

In [Cotler, Rezchikov ‘23] we developed detailed algorithms leveraging insights
from RG to build tailored flow-based and diffusion model algorithms for
field theories

Here let us show some results from our learned models in the context of
Euclidean scalar ¢* theory in 2 dimensions (20 x 20 grid)

cooss o [N S I
e

RG flow

/@M O
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[Cotler, Rezchikov ‘23]

Learning RG flows

35000 4
25000 o] /"
i Mo =
10000
2 B Exact RG flow
5000 1
o —2000 -
0.0 0.1 02 03 0.4 0.5 0.6 00 ol 0z 0.3 0.4 0s 0.6
B Learned RG flow
108 s
g Learnedusing
1.06 -
[Gerdes et al. 22]
0.80 4 104
max || Z .
0.75 l
1.00 -
B0 0.98 -
' 0.96 -
L] 0.1 0.2 0.3 0.4 0.5 0.6 0.0 01 0.2 0.3 0.4 05 0.6

O/ Q@M O
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[Albergo, Cotler WIP]
Learning quantum ground states

Variationally learn ground Momentum space 2pt of variational ground state

140

state wavefunctionals of —
e.g. 2+1 scalar ¢* .

120 —

110

Use a MERA-inspired ansatz

100

90

Currently working with 128

80

bosonic lattice sites (!) .
60
Should scale to at least 1024 50 +————"—T—T—T— """
. . . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
bosonic lattice sites ey
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Connections to other stories

Mathematical physics ([Bauerschmidt-Bodineau], [Bauerschmidt ‘23])
Mixing of Markov chains in high-temperature ¢*, sine-Gordon

Optimal transport (above, also [Cotler, Rezchikov ‘22])
Bakry-Emery, log-Sobolev inequalities, connection to correlation decay

Bayesian inference [Berman et al.]

Stochastic localization ([Montanari ‘23], [Eldan-Koehler-Zeitouni ‘21], many others)

Many powerful results about spin glasses, convex geometry, mixing of Markov chains

Wilson/gradient flow ([Liischer], [Carosso], many others)
Wilson flow is an interesting smoothing process (Yang-Mills gradient flow)

Motivation for work on normalizing flows
Q/AEN® O
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Discussion
Many rich connections between field theory and latent diffusion models

New algorithms for efficient sampling of field theories, sampling along RG
flows, and learning ground states of quantum field theories

Insights from RG flows may also help to improve latent diffusion models
for image generation

Much more to understand and explore

/@M O
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[Carosso ‘19]
[Cotler, Rezchikov ‘22]

Reprise: Fokker-Planck versus Langevin icotier rexchitov 23]

O pr L[ 62 Py[¢] I A
Fokker-Planck: - Pl¢] = ; /d th(Ipl)(M(pw(_p) + 2550 )(5¢(_ )Pt[cbl)) FPDE

Stochastic Langevin: d¢:(p) = —B:(|p|) Z‘% dt + /By (|p|) dn:(p) Stochastic PDE

Question: Given some Fy|¢], how do we sample from Pr[¢]?

Fokker-Planck

BP9 > Pr|¢]
sample l l sample
¢o(p) : : > ¢7(p)

stochastic Langevin

/@M O
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