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Abstract:
We consider the problem of learning a generative model parametrized by a two-layer auto-encoder, and trained with online
stochastic gradient descent, to sample from a high-dimensional data distribution with an underlying low-dimensional structure.
We provide a tight asymptotic characterization of low-dimensional projections of the resulting generated density, and evidence

how mode(l) collapse can arise. On the other hand, we discuss how in a case where the architectural bias is suited to the target
density, these simple models can efficiently learn to sample from a binary Gaussian mixture target distribution.
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Training set ~ p new generated samples
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Transport-based generative models learn to sample (generate) complex distributions in high-dimensions from
moderate training sets.

Ho, Jain, Abbeel, Denoising Diffusion Probabilistic Models, NeurIPS 2020
Sohl-Dickstein et al., unsupervised learning using nonequi-librium thermodynamics, ICML 2015
Song and Ermon, Generative modeling by estimating gradients of the data distribution. NeurlPS 2019
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# training samples

104

1 10 102

Generated from model | B ’
trained on D, FiW .

Generated from model
trained on D,

y

-

Kadkhodaie et al., Generalization in diffusion models arises from geometry-adaptive harmonic representation, ICLR 2024

Two models trained on disjoint training sets D, and D, generate the same image from
a given prompt when trained with sufficiently many samples (~ 2 — 16x dimension).
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How is the distribution of generated samples shaped by the network architecture?

—Try to understand in simple models.
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Analysis of the transport only

Chen et al,. Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions. arXiv:2209.11215, 2022.
Biroli et al, Dynamical regimes of diffusion models. Nature Communications, 15(1):9957, 2024
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Analysis of the transport only

Chen et al,. Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions. arXiv:2209.11215, 2022.
Biroli et al, Dynamical regimes of diffusion models. Nature Communications, 15(1):9957, 2024

Sample bounds when density can be perfectly learnt by the model class with enough samples:

Boffi et al., Shallow diffusion networks provably learn hidden low-dimensional structure., arXiv:2410.11275, 2024.
Chen et al., Score approx-imation, estimation and distribution recovery of diffusion models on low-dimensional data, ICML 2023
Oko, Akiyama and Suzuki, Diffusion models are minimax optimal distribution estimators, ICML 2023
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‘(. 9 - Target density p
—=== Generated density p

Analysis of the transport only

Chen et al,. Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions. arXiv:2209.11215, 2022.
Biroli et al, Dynamical regimes of diffusion models. Nature Communications, 15(1):9957, 2024

Sample bounds when density can be perfectly learnt by the model class with enough samples:

Boffi et al., Shallow diffusion networks provably learn hidden low-dimensional structure., arXiv:2410.11275, 2024.
Chen et al., Score approx-imation, estimation and distribution recovery of diffusion models on low-dimensional data, ICML 2023
Oko, Akiyama and Suzuki, Diffusion models are minimax optimal distribution estimators, ICML 2023
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Analysis of the transport only
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Chen et al,. Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions. arXiv:2209.11215, 2022.
Biroli et al, Dynamical regimes of diffusion models. Nature Communications, 15(1):9957, 2024

Sample bounds when density can be perfectly learnt by the model class with enough samples:

Boffi et al., Shallow diffusion networks provably learn hidden low-dimensional structure., arXiv:2410.11275, 2024.
Chen et al., Score approx-imation, estimation and distribution recovery of diffusion models on low-dimensional data, ICML 2023
Oko, Akiyama and Suzuki, Diffusion models are minimax optimal distribution estimators, ICML 2023

.—>To complement these results : a tight characterization of the generated density in the case where
.archltecture and target distribution are not perfectly matched.

_________________________________________________________________________________________________________
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Outline

1. Generated density for an auto-encoder parametrized model
2. Failure modes : mode(l) collapse

3. Aligned case: binary isotropic Gaussian mixture distribution.

HC, Pehlevan, Lu, Precise asymptotics of learning diffusion models: theory & insights, ArXiv 2025
HC, Krzakala, Vanden-Eijnden, Zdeborova, Analysis of a learning a flow-based generative model from finite sample complexity, ICLR 2024

9
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Transport-based generative models : reminders, notations 1. Generated density

@
@ |
\

Goal: sample from a
target distribution p

Albergo, Boffi, and Vanden-Eijnden, Stochastic interpolants: A unifying framework for flows and diffusions. arXiv:2303.08797, 2023. 15
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Transport-based generative models : reminders, notations 1. Generated density
E=1 i |
& O >
® - S T
-
Xy ~ N(0,1,) Xy ~p

| 2 Bt ar €
. EXt i (ﬁt - af_ﬁt + & a_z)f(t»Xt) + (a_t_g) Xe + 26 dW,

The sampling can be done by transporting
X, through the SDE for t € [0,1]

Sl o e

------------ | —
For any choice of a, B € C%([0,1]) £ =l
interpolation schedules st:  ayg=p; =1,a; =, =0 : “
€ = 0 :
. rt

Albergo, Boffi, and Vanden-Eijnden, Stochastic interpolants: A unifying framework for flows and diffusions. arXiv:2303.08797, 2023.
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Generated density

Transport-based generative models : reminders, notations 1.
E=1 i |
. . >
I S T
-
Xy ~ N(0,1,) Xi~p

The sampling can be done by transporting
X, through the SDE for t € [0,1]

| 2 Bt ar €
. aXt i (ﬁt - af_ﬁt T & a_z)f(t»xt) + (a_t_g) Xe + 26 dW,

Sl o e

Denoising function is the minimizer of a denoising objective

S ———————

! Learnable from data

~

1
f= mhinf ]Ex1~p,xo~N(0,]1d)||h(t: aixo + Prxq) — x1||2dt
0

Albergo, Boffi, and Vanden-Eijnden, Stochastic interpolants: A unifying framework for flows and diffusions. arXiv:2303.08797, 2023.
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Auto-encoder parametrization 1. Generated density

VX ERY, | fo, (1) =

S
_|_
SIE
Q
S
2l
~——

Trainable skip connection b € R

Weight matrix w € R4*"

Vincent et al., Stacked denoising AEs:Learning useful representations in a deep net. with a local denoising criterion, JMLR 2010 13
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Auto-encoder parametrization 1l

Generated density
vy € RY Ef (x) b+W (WTx)\:
% D fbw X)) =bx+—=0|—F—]
: v Vd vd ) |
Trainable skip connection b € R
Weight matrix w € R4*"
i ofo] el e
Remark: U-Nets are used in practice. _ | |
i
e skip connections
e bottlenecks []: !+
e convolutional layers i
/ H L et
3 ".-.- -..-..- 4 max pool 2x2
oemects sty
Ronneberger, Fischer, and Brox U-net: Convolutional networks for biomedical image segmentation. MICCAI 2015
Vincent et al., Stacked denoising AEs:Learning useful representations in a deep net. with a local denoising criterion, JMLR 2010 14

Pirsa: 25040092 Page 15/57



Auto-encoder parametrization 1. Generated density

beR

vx € R?,

P
=
Y
=
L —_—
yl
=
+
E
Q
P
‘a
_|
o=
S——

Trainable skip connection b € R

Weight matrix w € R4*"

. . . n
Given a training set of n i.i.d samples {xf ~p, xg ~ N(0, Hd)}n=1 one can train the network f;, ,, (x) with online SGD

T . 2
but1 — by = _d_’Q (&,IEL |z} — o0, (Cuzg + Bzl )

2
Wyt1 — Wy = —1) (V,,,IE; H:J:’f — o, (Quzg + ﬁt.'l,"f)” + "/d'mp)

Note T = 2n "/, and w;, b, the trained parameters.

Vincent et al., Stacked denoising AEs:Learning useful representations in a deep net. with a local denoising criterion, JMLR 2010 15
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Generated density

1.

Generated density

t = .
° O .
. 7777777777777777777777 . .a

-
~ N (0,14) X, ~p

d
axt=(ﬁ __ﬁt+ tﬁt)f(txt)+( __;)Xf—kﬁdwt
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Generated density 1. Generated density

O
@
A\

~ N(0,1,) Xy~ pPr

d
tht (ﬁt __Bt+ t B )bewT(Xc)‘F(a—t z—iz)xt-i_\/z_etdwt

t

Using the trained AE in the generative SDE

___________________________________________________________________
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Target density 1. Generated density

Gaussian mixture supported on g low-dimensional latent manifold
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Figure from Goldt et al., Modelling the
influence of data structure in learning in
neural networks: the hidden manifold
model, PRX 2020.

Tenenbaum., Silva and Langford, A global geometric framework for nonlinear dimensionality reduction. science, 2000
Weinberger and Saul, Unsupervised learning of image manifolds by semidefinite programming. Int. journal of computer vision, 2006.

18
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Target density 1. Generated density

Gaussian mixture supported on g low-dimensional latent manifold
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centroids u: R¥ — R® 3D >0,wp. 1, lu(|| £D
K = dim span{u(c)}. is low

covariances %:R¥ - S%(R) assumed jointly diagonalizable, with a
well-defined joint limiting spectral density. Figure from Goldt et al., Modelling the

influence of data structure in learning in
neural networks: the hidden manifold
model, PRX 2020.

Tenenbaum., Silva and Langford, A global geometric framework for nonlinear dimensionality reduction. science, 2000
Weinberger and Saul, Unsupervised learning of image manifolds by semidefinite programming. Int. journal of computer vision, 2006.

19
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Target density 1. Generated density

Gaussian mixture supported on g low-dimensional latent manifold

o= [ arE@sE) |
3 RK ;
centroids u: R¥ — R® 3D >0,wp. 1, lu(|| £D

K = dim span{u(c)}. is low

covariances %:R¥ - S%(R) assumed jointly diagonalizable, with a
well-defined joint limiting spectral density. Figure from Goldt et al., Modelling the
influence of data structure in learning in

neural networks: the hidden manifold

1
Average extension of the A= f dr(c) ETF[E(C)] model, PRX 2020.
density

Tenenbaum., Silva and Langford, A global geometric framework for nonlinear dimensionality reduction. science, 2000
Weinberger and Saul, Unsupervised learning of image manifolds by semidefinite programming. Int. journal of computer vision, 2006.

20
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Problem formulation: recap 1. Generated density

Target density p= f dr(c)V (u(c), Z(c))
RK
Fow (%) = bx +— Cﬁﬂ
Architecture X)=0D0XT—F—=0|—F—=
v Vd \vd
1} & ' o L y 2
) byy1—b, = —— (deEt ”.1{1 — fo,m, (pzh) + Bz )|| )
Learning f f d? ) for atime
Wyl — Wy = —1) (VH,IEL H:r:’f — Jou0, (aqzh + Bu)||” + '\/d'w#)
. d w K .
Sampling a){t = Ft\/éo'( :/at) +A§Xt+ /Zetth foratimet

, d!: ﬁt dt €;
i [, = —i—=fy -k €~ At =bT +———
with t (ﬁt a, ﬁt tatz) t - t+(1t a:;?‘

Generated density

fore=sanue ~
| De(D) = Law[X,] |

21
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Problem formulation: scaling limit 1. Generated density

Asymptotic limit ! n,d = o with™/,,x,7,D,K =0,4(1) |

Finite width, large amount of data, large dimension

Saad and Solla, Exact solution for on-line learning in multilayer neural networks, PRL 1995,

Gabrié, Mean-Field inference methods for neural networks, J. Phys. A 2020.

HC, High-dimensional learning of narrow networks, J.Stat Mech 2025 22
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Main result (informal) 1. Generated density

Tight characterization of low-dimensional projections of the generated density p.(t)

Consider a low-dimensional subspace € € R%, with dim€ = R = 0,4(1). The distribution of the
R —dimensional projection [1c X} is given by

23
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Main result (informal) 1. Generated density

Tight characterization of low-dimensional projections of the generated density p.(t)

Consider a low-dimensional subspace € € R%, with dim€ = R = 0,4(1). The distribution of the
R —dimensional projection [1c X} is given by

Where:

t
Y, € RR is Gaussian Y, ~N OR,ezfot Agds |4 + 2 f ese_z f;AEdZdS (Ig — @IQ;”@T)
0

24
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Main result (informal) 1. Generated density

Tight characterization of low-dimensional projections of the generated density p.(t)

Consider a low-dimensional subspace € € R%, with dim€ = R = 0,4(1). The distribution of the
R —dimensional projection [1cX; is given by

T e (el 5 e
| MeX, =1 07QFZ +Y,
Where: ,
Y, € RR is Gaussian Y, ~ N OR,ezfotAEds 12 f e.e? Jo A%az g (Ir — ©7QF0,)
0
" is distri | L 7, = NZ, + T,0,0(Z,) + 26,0, W,
Z; € R" is distributed as the solution of the SDE ¢ = BtZ; + IQ.0(Z,) + /2€,Q, t

dt

From initialization Z, ~ N (0,, Q,)

25
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Main result (informal) 1. Generated density

Tight characterization of low-dimensional projections of the generated density p.(t)

Consider a low-dimensional subspace £ € R%, with dim& = R = 0,4(1). The distribution of the
R —dimensional projection I1-X; is given by

'\ MeX, =% 0;QfZ, +Y, [
Where: ,
Y, € RR is Gaussian Y, ~ N OR,ezfotAEds R f e.e? Js 8%az g (Ir — ©7QF0,)
0
d T 5
Z; € R" is distributed as the solution of the SDE Ezc = AtZ; + TI,Q0(Z,) + v ZEth Wi

From initialization Z, ~ N (0,, Q,)

The parameters 0. € R"™R, 0, € R"*"are the solutions of a set of 5 coupled low-dimensional deterministic
ODEs.

Pirsa: 25040092 Page 27/57



Sketch of derivation 1. Generated density

| &
<
|
=3
H%
Q
N
ﬁ
_|
Lo
Sc—

ALY, + [2€,dW,

___________________________________

Non-linear transport in Linear in W/
Wr = span({w;}i=,)

27
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Sketch of derivation 1. Generated density

d ! wy [(w,TX, '
aXt == E‘ Ft .Jéo-( :/a ) é +A§Xt + '\IZEtth
Non-linear transport in Linearin WTJ'
W, = span({w;}i=,)
T d wIw e 2
Dynarmics of 7, ==t Gy = Mz h=g=a(2) +\/z—et( ) W

28
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Sketch of derivation 1. Generated density

s 7~ S SIS S —— :
d f w,  [(w.'X, '
—X, = | I L +ATX, + ./ 2€,dW,
dr | t \/aa( Ja | tdt ta@We
; Non-linear transport in Linear in W;-
W, = span({w;}i,)
o d y wy w, Wy Wy 2
Dynamics of Z, = twr el A AZ + FtTU(Zt) +\/2¢€; d Wi
T
The SGD dynamics of the summary statistic Q, = W’dwr (and others) self-average and can be characterized

in closed-form by a set of low-dimensional ODEs.

Saad and Solla, Exact solution for on-line learningin multilayer neural networks, PRL 1995

29
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Takeaways 1. Generated density

Intuition:

e The network identifies a r —dimensional W, subspace where the target
p has important structure, and implements a non-linear transport.

e |t approximates p in the orthogonal space by an isotropic Gaussian,
* whose variance is tuned by the skip connection strength.

Special case: linear networks g(x) = x

e Linear networks approximately learn = principal components W, ~ PCAr[{xf}u]

Pretorius et al,. Learning dynamics of linear denoising autoencoders. ICML, 2018. , .....

* The linear diffusion model does a Gaussian approximation in the principal space. In the orthogonal space,
approximates by an isotropic Gaussian.

30
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Generated density with training time : Gaussian mixture 1. Generated density

o = RelU activation,
r = 4 hidden units

=== Target density p === (theory) Generated density p I (exp) Generated density p

3
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Generated density with training time : Gaussian mixture

1.

Generated density

o = RelU activation,
r = 4 hidden units

&\

\\‘ -
\ \\_/

-

N
)

=== Target density p

Pirsa: 25040092

(theory) Generated density p

(exp) Generated density p
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Generated density with training time : Gaussian mixture

1.

Generated density

o = RelU activation,

r = 4 hidden units

T=0.3

R

N\‘-

N

{
\

=== Target density p

Pirsa: 25040092

=== (theory) Generated density p

(exp) Generated density p
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Generated density with training time : Gaussian mixture 1. Generated density

o = RelU activation,
r = 4 hidden units

=00 T=08 T=28
TR
\
=== Target density p === (theory) Generated density p B (exp) Generated density p

34
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Generated density with training time : Gaussian mixture 1. Generated density

o = RelU activation, o = tanh activation,
r = 4 hidden units r = 2 hidden units
=00
=== Target density p === (theory) Generated density p B (exp) Generated density p
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Generated density with training time : MNIST 7s

1. Generated density

t=0.0 T=1.0 T=1.35
®
T=15

=== Target density p

Pirsa: 25040092

(theory) Generated density p

o = tanh activation,
r = 2 hidden units
Gaussian p with MNIST covariance

I (exp) Generated density p

37
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Generated density with training time : MNIST 7s 1. Generated density

E=09 o = tanh activation,
r = 2 hidden units
Gaussian p with MNIST covariance
=== Target density p === (theory) Generated density p I (exp) Generated density p

36
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Generated density with training time : MNIST 7s

1. Generated density

=== Target density p

Pirsa: 25040092

t=0.0 T=1.0 T=1.35
®
T=15 T=18
1

(theory) Generated density p

o = tanh activation,
r = 2 hidden units
Gaussian p with MNIST covariance

I (exp) Generated density p
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Generated density with training time : MNIST 7s

1. Generated density

t=0.0 T=1.0 T=1.35
% ‘
T=15 T=18 T=25
7 a) /4
= (/C')“/
N\
\' / "{‘ 7/
— |\= —
1

=== Target density p

Pirsa: 25040092

(theory) Generated density p

o = tanh activation,
r = 2 hidden units
Gaussian p with MNIST covariance

I (exp) Generated density p
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Generated density with training time : MNIST 7s 1. Generated density

=0.0 =1.0 =1.35 2 .
- L i o = tanh activation,

r = 2 hidden units
Gaussian p with MNIST covariance

t=0.0 T=1.0
T=1.5

T=1.35

T=1.5 T=18
7\
Target density p === (theory) Generated density p I (exp) Generated density p

40
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Generated density with training time : MNIST 7s 1. Generated density

=0.0 =1.0 =1.35 - .
- L i o = tanh activation,

r = 2 hidden units
Gaussian p with MNIST covariance

T=0.0 T=1.0

T=1.35

T=15 T=18
=\
(= '\ t=15 T=18 T=2.5
5 7
e
Target density p === (theory) Generated density p I (exp) Generated density p

41
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Mode collapse 2. Failure modes

t=0.0 T=1.0 T=1.35

Closed-form expression for the trained skip connection

AR [53:] [1 == bu)e—(AEL[ﬁfHEt[af])f}
i AE[5] + E¢[af]

T=15 T=18

1
Average cov. eigenvalue A = jdn(c)ETr[E(c)]

is typically small in real datasets, causing
~mode collapse

Goodfellow et al., Generative adversarial nets. NeurlPS 2014,

=== Target density p === (theory) Generated density p I (exp) Generated density p

42
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Model collapse 2. Failure modes

Can this bias be aggravated when using synthetic data to train a new generative model ?

p - p‘(l) 3 5(2) B, ﬁ(g)

43
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Model collapse 2. Failure modes

Can this bias be aggravated when using synthetic data to train a new generative model ?

p - ﬁ(l) 3 ﬁ(z) B, ﬁ(g)

Remark: Manifold form of the generated density

P is still of the form [ dr(c)V'(u(c), £(c)), with u(c) = c and

t

Thus the analysis carries over iteratively to generations ﬁ(z),

44
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Model collapse 2. Failure modes

== Targetdensity 590 === (theory) Generated density 59"Vl (exp) Generated density p(9+1)

Shumailov et al., Ai models collapse when trained onrecursively generated data. Nature, 2024
45
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Aligned case

3. Aligned bias

Binary, isotropic Gaussian mixture

p= 1/2 N(—po0?1y) + 1/2N(+‘u,02]1d)

Pirsa: 25040092
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Aligned case 3. Aligned bias

Binary, isotropic Gaussian mixture ~ p = 1/2 N(—p0?1,) + 1/2 N(+p,0%1,)

At each sampling time, train a separate AE with = 1 hidden unit and ¢ = sign activation

n
b, W, = argming gaxr Z | fow (aext + Bext’) — xf”z + Allwl|?
=1

o\ L N~ H o o\ L
e e DN DL e
t=0 o7 X3 7 X3 o7 N t=1
A - £ e S
O | | | | o 5
\ \ | |
by, wy, b, we, by, W, bW,

=)

47
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Aligned case 3. Aligned bias

Binary, isotropic Gaussian mixture ~ p = 1/2 N(—p0?1,) + 1/2 N(+p,0%1,)

At each sampling time, train a separate AE with r = 1 hidden unit and ¢ = sign activation

n
b, W, = argming_gaxr Z | fow (@ext + Bext) — xf”z + Allwl|?
p=1

d 4 i,
Sampling : Ext = B¢ —a_ﬁt foew,(Xt) +;Xt
t t
N 4 N 4
t=0 £ PN 7 =1
® | | | e .
by, wy, by, W, by, W, bW,

48
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Characterization of the generative transport 3. Aligned bias

Closed form characterization of the dynamics

In the asymptotic limit d — co withn = 0,4(1), ||u|| = @d(@, the sampling dynamic is non-
linear in span(u, £,n) where

mn mn
J I
E = Z S":L-(l's = Z S“ (:‘B’l Sﬂﬂ,),
p—1 pu—1 X M
£ n x t=0.0
The coordinates M, Q;, @, of a sample X,follow the ODEs x t=0.2 x
x t=04
t=0.6 x ¥
d (B0BW)(A(+0*)+(n—1)0?)+a(t)a(t)(A+n—1)) )M+ (a() A1) —a(t) f(e) ) 2eGtn=t) t=08
WAI‘ T = v T = ) X . X
’ oA Fn—D+AD (A (1+0 )+ (n—1)a?) i B i 2
dnE (BOBLO+0*)+(n—1)0?)+a(Da(t)(A+n—1)))QE — (a(t)B(1)—a(1)A(t) ) AL 2 )+ (n=1)oT) it X
ﬁQt _ a()XAFn—1)+B(OI A1+ +(n—1)a?) x
dn (BOBWA(+e?)+(n—1)a?)+a(t)a(t)(A+n—1)))QT+(a(t)At)—a(t) A(1) ) 2L =1 x
di et a(t)2(A+n—1)+B(L)2(A(1+a2)+(n—1)a?) x
»
x
The component X;- orthogonal to span(y, &, 1) evolves linearly
(—IXJ' - (fs(r.),rs(a)().m+a3)+(n-1)a2)+r.(a)u(:)(,\+-n-|)))XJ_
di = s a()Z2(A+n—1)+8()2(A(1+02)+(n—1)c2) t
HC, Krzakala, Vanden-Eijnden, Zdeborova, Analysis of a learning a flow-based generative model from finite sample complexity, ICLR 2024 49
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Sample complexity 3. Aligned bias

Corollary

The mixture Wasserstein distance between the target p and the generated density p decays as

(ot A (1))
| sz[p,p] =0\=
n/ |
IR -
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Sample complexity 3. Aligned bias

Corollary

The mixture Wasserstein distance between the target p and the generated density p decays as

————————— ~
A1 _ |
I MW, [p, p]l = 0 (—)
n/ |
IR -
x4 X P <
X n=4
X n=8 2
X n=16
»» n=32
@ x n==64 'x
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Sample complexity 3. Aligned bias
Corollary
The mixture Wasserstein distance between the target p and the generated density p decays as
(A (1))
| MWZ[pJP] =0\
n/ 1
, ST
P
10° 4 .
x x P1 -1 ] A
' S = 1 10 i U
X n=8 = ~
x n=16 | i
n=32 = 1072 5 Py
X n==64 'x -
o
10! 102
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An intuition 3. Aligned bias

Intuition : The optimal denoising function follows from Tweedie’s formula (Empirical Bayes) and is of the same
functional form as the AE

o Bt o B 1
(@)= e+ B T a@r + Rt < h(a(t)2+5(t)2a2“ )

____________________________________________________________________

Bradley Efron. Tweedie’s formula and selection bias. Journal of the American Statistical Association, 2011
Robbins, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, vol. 1: Contributions to the Theory of Statistics.
Koichi Miyasawa. An empirical Bayes estimator of the mean of a normal population. Bulletin of the International Statistical Institute, 1961
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Perspectives

Inductive bias of Unets?

‘ e U-nets are suited to data with a hierarchical structure
! I
Kadkhodaie et al., Generalization in diffusion models arises from geometry-
H'l adaptive harmonic representation, ICLR 2024
H’l |‘|°= S Mei, S. U-nets as belief propagation: Efficient classification,denoising, and
N copy e crop diffusion in generative hierarchical models, arXiv:2404.18444, 2024.
ko 3 . Hasiesrie

(Recall also Alessandro’s talk!)

Ronneberger, Fischer, and Brox U-net: Convolutional networks for biomedical image segmentation. MICCAI 2015

transitions in the sampling process.

lﬂﬂ For infinitely expressive networks who can perfectly overfit the data, dynamical
’ oy - Biroli et al, Dynamical Regimes of Diffusion Models, Nature Comm. 2024

How are they altered for networks with finite expressivity?
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Thank you for your attention !
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