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Abstract:

In this talk, | will discuss how physics can help improve our understanding of deep learning systems and guide improvements to
their scaling strategies. | will first discuss mathematical results based on mean-field techniques from statistical physics to
analyze the feature learning dynamics of neural networks as well as posteriors of large Bayesian neural networks. This theory
will provide insights to develop initialization and optimization schemes for neural networks that admit well defined infinite width
and depth limits and behave consistently across model scales, providing practical advantages. These limits also enable a
theoretical characterization of the types of learned solutions reached by deep networks, and provide a starting point to
characterize generalization and neural scaling laws (see Cengiz Pehlevan's talk).
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Al is Changing The World

Language Models for Text and Code Generation Biology (Protein Folding)

. c hatG PT ) con you implement en sigarithm that samples states from the 3D ising model?

¢Claude
emini

LLaMA =
vOOMeta

Vision Models (Object Recognition)
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Challenges of Modern Machine Learning

Expensive: Current approaches very data and compute hungry

Effective stock (number of tokens)

Estimated stock of human-

Data: Biggest models trained on ~10 o e omerted publio toxt 95“‘\
trillion out of ~100 trillion words on infernet N | S— ——

1M )
Dataset sizes used to train
Human being reading 100 pages per day for 100 i N
o e DBRX’ ~2028
years would get < 3 billion words e Median date of ful
stock use; 80% CI
10|7
5 ~2027
GPT3 Median date with 5x
10" overtraining; 80% Cl |
2024.0 2022 2024 2026 2028 2030
. ' Year
Energy: Training a single model ~500 MWh, Villalobos et al 2024

which annual consumption of 50 US households.
Even more for inference costs

FT Financial Times
Georgia Institute of Technology

Al's Energy Demands Spark Nuclear Revival I | i i flscliguslsuige mnewilSdas Ronesilants P e T

The US is on the cusp of a natural gas power plant construction boom, as Big Tech
The demand for electricity to power Al data centers is skyrocketing, placing immense P e gasip P i 9

_ turns to fossil fuels to meet the huge electricity needs.
pressure on traditional energy sources.

2 weeks ago 1 week ago

Money: SOTA LLMs cost ~$100M USD. Decent part of the cost is due to performing large number of training runs

Can we reduce some of these costs by making training more stable / predictable?
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Era of Scaling in Deep Learning

How does performance depend on model size and training time?  Neural Scaling Laws

7 .
4.2
6 N\ L=(0/5.4- 10779 | 561 "\ L =(N/B.8+10%3)7007
: 3.9 4.8 \.\‘
Y-
§ 1 3.6 T
? S 58
= 3
3.0
2.4
L =1(Cninf2.3" 10%)9-0:0
7] . : : . 2:7 . . -
fo-* 10°7 107 107* 107! 10! 108 109 105 107 10¢
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Following these trends, 10x of compute leads to 10% reduction in loss
What are the limits of this scaling paradigm? Infinitely large models

Today’s talk: Statistical mechanics theory of large neural networks

What sets these power laws? What do they depend on?

Cengiz’ talk (tomorrow): Compute optimal scaling laws (convergence rates to the limits)
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Challenges of Modern Machine Learning

Theoretical Challenges: predictability / interpretability / principled design choices

Complex architectures with billions of parameters!

Fully

Convolution Connected

Pooling .-~
Input

Feature Extraction

% Output

900000

Classification

Convolutional network (weights shared
across spatial positions)

Fully Connected (MLP)

How to initialize and optimize models to be predictable,
and monotonically improving under scaling?

Output
Probabilities

Add & Norm_J+—,
Feed
Forward
7
I_F\ Add & Norm e,
~=_Add & Norm Vut-Head
Feed Attention
Forward 5 J Nx
" Add & NormJe—,
~—=_Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
\ J —)
Positional ) Positional
Encoding Encoding
Input Cutput
Embedding Embedding
Inputs Outputs
(shifted right)

Transformer (learnable attention maps
across spatial positions)
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Why Physics for Modern ML Problems?

Philosophy: Accurate Approximations + Insights of Simple Models >> Rigor

Leo Breiman
Statistics Department, University of California, Berkeley, CA 94305;

e-mail: leo@stat.berkeley.edu 19951
Reflections After Refereeing Papers for Neurips

Why don’t heavily parameterized neural networks overfit the data?

What is the effective number of parameters?

Why doesn’t backpropagation head for a poor local minima?

When should one stop the backpropagation and use the current parameters?

These are problems about dynamics, optimization, and statistics better suited to the techniques
and ideas of physics.

Understanding deep learning is also a job for
physicists

Automated learning from data by means of deep neural networks is finding use in an ever-increasing number of
applications, yet key theoretical questions about how it works remain unanswered. A physics-based approach may

help to bridge this gap.

Lenka Zdeborova

Focus on science: don'’t (just) chase empirical benchmarks, tight feedback between experiment and theory

Don’t fear the infinite: microscopic -> macroscopic descriptions

Physics Approach: Find theoretical descriptions of the solutions that randomly initialized
networks trained with optimization algorithms actually converge to in typical/average case
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Modern Machine Learning Problems

Scaling Limits of Neural Networks

Initialization Scale

Training Time

Width

Learning Rate

Depth Data

Depth

How to scale up to get well defined infinite parameter limits? What do limits look like?

Dynamical mean field theory (DMFT) for deep learning networks

Neurons (particles) interacting at finite width N

J\}I—I}})o —»  independent neurons (particles) coupled to popuiation averages

Practical extensions: Hyperparameter transfer to reduce training costs during scaling

Improved theory and practice for transformer scaling
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Training Wide Neural Networks

T N — c>oI 1 D
1 0
- s hz — "—D ZWW X
O O L
N
= opl = s S Whe(h)
g 8 “Dog” Nzi:l
O O
s f=——3 wke(ht)
(€} O Y N j=1
| |
h! fie

Random Initial Weights: Wé,-(()) ~ N(0,1) atinitialization.

Non-convex High Dimensional Optimization: Weights are updated so the network fits data/
2

d d P

dyiy= L Lqwty oo ]

dt aw 5 L=) | f#) -y
Loss Function =1 output  target
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Large Width Limits

Initialization Scale Y0

Training Time

Width

Learning Rate

Depth Data
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Training Wide Neural Networks

1 _ 0

o o h% — "—D ZWZQ L j
O ® =L

N
= S M = e D Whed)
g 8 “Dog” Nji:l
O @]
o f=——> wke(h)
O O Y N j=1
| J
h! ht

Random Initial Weights: Wé,-(()) ~ N(0,1) atinitalization.

Non-convex High Dimensional Optimization: Weights are updated so the network fits data/

2
d . d ¢ &
W) =—=5 LAWY 13| #@,) - y(a)

Loss Function =1 output  target

How to characterize/predict/summarize what the model learns?
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How you Scale Up Matters!

2.0 param
NTK
1.8 MF 1 N
L(L
n 1.6 N f=—2) wle(hf)
3 — 64 TN S
-1 1.4
S — 128
4 = 250
L 1.2
e 11 17
150 1024
0.8
Depth 12 ResNet on CIFAR-10
0 2 4 6 8 10 12 SGD training
Epochs
Common scaling practice: v = O(1) ——  Slower training as [V increases

Increasing width based on mean-field theory v = @ (V N ) ——> Similar performance
Mean field also displays faster convergence to limiting behavior

Proposal: study this scaling rule for infinite width networks! Y = YoV N

Pirsa: 25040085 Page 12/32



How to Scale Up Width”? Dimensional Analysis

IN_>OOI 1 D

| hi = N%Zm%mj W5(0) ~ N(0, N~2%)

@) O

: i W = Z ®(h5) Wi5(0) ~ N(0,N~2)
O - =0

©: O

o o f=— wa’qﬁ(hf) wi(0) ~ N(0, N~2°r)

- 5 ’7N S

@) ® a

| | —Wf t) = —noy:—=L — ¢

. i () = —moy ST v =N

(1) Stable Forward & Backward Passes
1
<(h§)2> =0(1) ag+bp=0 at+tb = 5 te{l,.. L}

d 1 1
(2) Function Learning: @f =0(1) arp = 2 ap + by = 3 ag+br, =0

d 1
(3) Feature Learning: ahf = @(1) —> C—= 5 See Yang & Hu '21, B & Pehlevan ‘22
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Contrasting Parameterizations

N —
T [ (1) Stable Forward & Backward "
e O
O O CLQ-I—bO:O a£+b£:§ EE{].,,L}
0 O J
@ 8 8 @ (2) Function Learning: ﬁf = 9(1)
o ® 1
O O CLL:§ ag—l—bL:§ ag+ b, =0
@ O
1
([D Cl) (3) Feature Learning: %hf =0(1) = c= 5
ht i

Standard Parameterization (SP) (PyTorch Default with no LR Tuning)

1
ag =0,bg =0,ap =0,bp = —,c =0  Satisfies (1) but not (2) or (3) , unstable

2
NTK Parameterization (Jacot et al ’'19)
1 Satisfies (1) and (2) but not (3)
ag,bo =0, ar = 9’ by =0,c=0 (stable but no feature learning in the limit)

MF / muP (Geiger et al ’19, Yang & Hu ’21)
1 1
ag,bo = 0,a¢ = 2’ by =0,c= 2 See Yang & Hu '21, B & Pehlevan ‘22
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Large Width Limits

Initialization Scale Y0

Training Time

Width

/

Learning Rate

Depth Data

How to mathematically characterize the dynamics of training in the infinite width limit
that satisfies all 3 constraints?

We need some physics!
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Primer on Dynamical Mean Field Theory

Random Coupled Systems in High Dimensions

Spin Glass Example:  H({s;}) = Z Jsiss =T N(O, 1)
Langevin Dynamics () S% J;iS s;(t 1 (t
On sphars ¢ Z i85 (t) — A(t)si(t) + Ji(?)
Correlation Function Response Function
N_ Ly / R(t,t 95i(t)
Cltt) = = D (s:t)si(t) (1) = % Z; 0
i=1 i=

Sompolinsky & Zippelius ‘82, Kurchan & Cugliandolo '93, Bouchaud et al ‘97

All sites decouple: effectively a one dimensional stochastic process (dynamical mean field)

Ops(t) = =A(t)s(t) +| n(t) |+ / dt' R(t,t")s(t")
v 7

.

colored noise g
memory term

(n(t)n(t')) = C(¢,t)
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Primer on Dynamical Mean Field Theory

Random Coupled -> Uncoupled System in the Limit

"y R(t,t")
N — 0o n(t) g é
s(t)

Correlation and Response Form Closed System from Single Site Picture

C(t.t) = (s@s(t)) R(tt)=(5uir ) n(t) ~ GP0,C(1.1")

y

Many theoretical methods give this result
1. Saddle point of a Martin Siggia Rose Path integral Z = dedR exp (—NS(C, R))

2. Cavity (add new site) argument, compute self-feedback through other sites

3. When dynamical system is linear, can use random matrix theory / deterministic equivalence
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Mean Field Theory for Deep Network Training

. N — o0,
LT ANz, o 8, )
@ (®)
O 0 uf(a:,t) :é
® O ‘
OFT = CJIN e
O O
. = N — o0 BE—I_l(:T:x,:t! t,)
> = P =0x(1) >
: o r*(z,t) ’é
Cf Cf g‘(,1)
0 t
! pL Gradient fields: ge(wat) = N%%

Correlation and Response: As /N — oo learning dynamics completely summarized by

Dynamical Feature kernels Gradient kernels

q)g(wrmlat: t’) - <¢(h£($,t))¢(h€($,,t,))> Ge(mv:ﬂ:t:t,) — <g£($:t)g€($,7t,)>

T dp(ht(z,t)) / 6g°(x,t)
B & Pehl DI e £ ¢ 8 W i i ol o 4 Rii= | e i
enievan A (33, & il ) < 5’)"6(3?”15’) B (ZE,ZL' bt ) 5ug(x;’ t,)
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Saddle Point Equations (the N — oo limit)

Single-Site Dynamics: Each neuron is independent & follows a single-site stochastic process

109

N
p(*) ~ [ [p(h)) ==
1=1

L4
-2 A
10724 7,
]

t
Ré(z,t) =| u(z,t) —l—’yOEx:/ ds [A"Y(z,2',t,8) + p(a)A(2', )@ (2,7, t, 5)] ¢° (2, 5)
N 0 P
Gaussian Process ~
Feature Learning Correction

Correlation Functions: Averages over neurons replaced with averages over this process
Correlation functions (kernels):  ®*(z,2’,t,s) = {(¢(h*(z,t))p(h* (', 5)))
G(z,2',t,t) = (g*(z, 1)’ (', 1))

Output Dynamics: The outputs of the network evolve in terms of these correlation functions

4 (z,t) = —E iG”l(;c z', 1)@t (z, x’ t)i
dt’ " o " 9f(@'t) B, Pehlevan 22
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Lazy vs Rich Operating Regimes

Richness: Infinite width equations depend crucially on an output multiplier Y0

Pirsa: 25040085

10° ) _— 10°
[ y=30
107! y B N ---- DMFT 107!
E ,-":/ \ -h\ ";“" ',._,”.!..
= 10-2 ‘:;/ \ "\..‘ = 10-2 M ;
'y T RN
1073 :"l-u' .* ‘hd‘, 1073 ,{:’ v
i lF f i i
= N o Wy 8 ]
0 50 100 150 200 Lo e % 5 £ =
t h
Final h Distribution Final z Distribution
Yo=0.2 Yo=1.0 Yo=2.0 Yo=3.0
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Lazy Learning = Constant Neural Tangent Kernel
Lazy Limit: the vy — 0 limit gives a dramatic simplification to the DMFT equations
Internal variables constant hf (33 t) = uE(LE) ~ N(O (Pg_l(a:, x’))

d

Linear dynamics for outputs d t

Neural Tangent Kernel K(x x’) —
(Jacot et al 2019) ’

Linear method in infinite dimensions

Many theoretical works on this limit Input Space Feature Space

Jacot et al 2019, Hanin 2019, Arora et al 2020, Lee et al 2020, ...

Weak feature expansion: perturbation theory in Y0

Dyer & Gur Ari 2021, Roberts, Yaida, Hanin 2021, B & Pehlevan '22, ...
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Statics: Is there an equilibrium distribution?

Initialization Scale Y0

‘ DMFT studies 1 with ¢ fixed
N—oo
———~  Training Time
Width 4\ Can we say something about t — 007
o i Learning Rate

Depth Data

Langevin Dynamics: Add noise and weight decay to the dynamics

d 0
uréf
6W,f;.

dt zy( ) — _7772 £({W£}) o ;8_1ij(t) a5 218_1€fj(t)

Equilibrium Distribution: Take the T — OO limit first, converges to a Gibbs measure

p({W*}) o exp | —By2L{W*}) — Z (W2
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Prior work on Statics

Equilibrium Distribution: Take the t — OO limit first, converges to a Gibbs measure
p({W*}) oc exp ( BYL{W*}) — Z (W )
Lazy Limit of Bayesian Networks (NNGP): N — oo  Fixed v, P

(I)fW = <¢(hp/)¢(hy)>hNN(o,(bg_l) Kernels behave same as prior

Neal '95, Lee, Bahri et al 2018, Novak, Xiao et al 2019, .

Weak Feature Expansion: leading order corrections in o / N
2 4

i Y
O =05+ =P o
ot P11tz t.

Zavatone-Veth et al 2021, Yaida 2021, Roberts Yaida Hanin 2021, ...

Proportional Limit: Scaling limit where data P and width IV diverge with P = a/N

Scale renormalization effect P ~ C(Oz )(I)O
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New Results on muP/MF Statics

Equilibrium Distribution: Take the T — OQ limit first, converges to a Gibbs measure

2 1 2
PUWY) o exp | -Br°L(W) - 5 2 W

muP Scaling LimitforBNN: N — o0 7 = YoV N

Kernels solve a set of saddle point equations min max S [{(I)£, (I)e }]
Similar to the DMFT equations without response {q_)f } {@2}

\ ~— NNGP
\ —— NNGPK
0.351 \ —— aNBK
\ aNTK Mean field equations exact for this limit
v 0.30
8 AN
- =~
E 2> " \ B - This limit performs much better than
= ‘\ Bl e, NNGP on CIFAR (image data)
0.20- N7l N -
0.151 \R\—\‘.‘.._,___A_ . 3
0 200 400 600 800 1000 Lauditi, B, Pehlevan 2025
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What about Large Depth?
Practitioners routinely train models with L ~ 100 layers (GPT-4 = 120 block layers)

>

< 1218 (3

| slT181 || (3] 12] (3] |8 18 18] |8 |8 18] (2] |8 |&] [&] (8] |8] |2] |2
mmmmmmmmmmmmmmmmmmmmmmmmmm

.......................
mmmmmm

Initialization Scale Y0

Can we characterize the
training dynamics as L — o0?

— Training Time

Width
Learning Rate

Depth Data

4

Existing common practice does not yield a limit... but for scaled residual networks, yes!

(41 1.4 b e,
b+ =T 4+ — - Wo(h)

B*, Noci*, Li, Hanin, Pehlevan, 24  Result: a dynamical system across training time and layers!
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The Large Depth and Width Limit
g

Solution: Res-Nets with scaled branches  hft! = hf + —W‘egb(hg)
vVNL
Result: Non-random limit for all DMFT observables  (oo,00 = lim dN,L
N,L—oc0
Intuition pump: characterize initialization L2
10
Neurons follow geometric brownian motion 5
= 0
¢ N2 <
H® = ((h°)%)

2
£4+1 £ 2 -15
H™ = H" + T (o(h) >h~N(o,Hf)

0.20

Introduce “layer time” T = — € [0, 1]
L 0.15
lim H*" = H(r) S, ..
L—oo X
Finite Difference to Differential Equation Gl

O-H(T) = :62 <¢(h)2>h~N(O,H(-r)) o s
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Practical Application: Hyperparameter Transfer
Sweep HPs in small models and then scale up with improved performance (Yang et al 2022)

Possible for both width and depth (B*, Noci*, Li, Hanin, Pehlevan, '24)

No branch scaling (common practice) MF+ scaled branches

Learning Rate

1.0 |- e
Depth 3\\\ '\
— 6 '-\\:\' ‘x:\
0.8 H % NG \ 0.8 5 ‘\.
= o N \:\-\ a I \z\
ST I U s
_E 0 6 \\\\ \\\ \\“:_\\.\. / _E 0 6 \\.\ ~ “\._______‘-_' .
0 < ST S 5 N
Width = \.‘ £ ———s = e $
— 128 0.4 s 0\\ “\\‘._ 0.4 S ‘._‘ Sso .
SR e b, S _h"f_‘,: - S P
——T *'::_:::a_,
0.2 : 0.2
1073 102 101 1073 1072 n*

Learning Rate

Hyperparameters fransfer across
widths and depths

Optimal hyperparams (HP) are not
the same for different depths

Saves $ since you only have to do search for good learning rates etc in small models

Industry starting to pursue this direction (Open Al, Google Deepmind, Cerebras, etc)
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Depth Limits of Transformers

Stable HPs

Depth uPa=1.0

Depth
—— 2
—_— 4
—— 8

-— 16

32
64
128

Improved deep models

- Eval Loss with Optimal LR at Depth 2

43-

42- ;
\ /

4.1- N 7a
N, 7

4.0 - & A

39~
—e— uP
3.8 - a
depth yP a=0.5
3.7- depth yPa=1.0
36- I i i i :
2° 2 7E 2¢ 2’ 2° 7
Depth

Our scaling ideas are useful for LLMs at large scale (in prep)! ‘(ceerebras

Page 28/32



Takeaways

Scaling Limits of Neural Networks Infinite width + depth limits of neural networks are
described by stochastic processes for each neuron

)

Initialization Scale

— Training Time

Width

Learning Rate =
Depth Data -15

0.0 0.2 0.4 0.6 0.8 1.0

Averages over neurons become deterministic
and determine the macroscopic behavior of the network

This Line of Theoretical Inquiry Has Practical Consequences
Enables hyperparameter transfer (consistent optimal learning rates) and guides design choices

Much more to do on this front!

How Are Finite Models Different Than these Scaling Limits?

Come back tomorrow for Cengiz’ talk , a simple solvable model of neural scaling laws
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Lazy vs Rich Operating Regimes

Richness: Infinite width equations depend crucially on an output multiplier Y0

1.0 10° _— 10°
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Realistic Architectures and Datasets in Online Training

ResNets on CIFAR-5M ImageNet
— N=32
7 N=64
2.0
6
215 a
4 EX

0.5

10! 10? _ 10° 10? 10° 10°
Train Steps Images seen

7.5
— d=256
7.0

Transformer on
Wikitext-103 22

Training Loss
(V]
w

4.5
40 Vyas*, Atanasov*, B*, Morwani,
35 Sainathan, Pehlevan ‘23

108 107 108
Tokens seen
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