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In this talk, | will present a proof that extremal Reissner-Nordstrom arises on the black hole formation threshold for the Einstein
equations coupled to a self-gravitating plasma. This constitutes the first rigorous result on critical collapse. | will then discuss a
formulation of the stability problem for extremal black holes, and present a positive resolution in the case of extremal
Reissner-Nordstrom perturbed by a self-gravitating neutral scalar field in spherical symmetry, despite the presence of the

celebrated Aretakis instability. This is based on joint work with Yannis Angelopoulos (Caltech) and Christoph Kehle (MIT)
(2402.10190, 2410.16234).
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Outline

1. Critical collapse and extremal Reissner—Nordstrom

2. The stability problem for extremal Reissner—Nordstrom

3. What's next
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“Moduli space” of classical GR

The set of asymptotically flat solutions of the Einstein equations coupled to
reasonable matter, parametrized by initial data

interpolating families

Minkowski space

future-complete spacetimes

KEHLE-U. '22 CHRISTODOULOU '94
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Extremal Reissner—Nordstrom

The Reissner—Nordstrom family of solutions

oM €2 oM 2\ !
gMe:—(1—+e)dt2+(l——|—e) dr® + r?dQ?
2 r r2 r rl

M > 0 mass, e € R charge (A = —er~1dt)

Spherically symmetric, static, solves the Einstein—Maxwell equations
Describes a black hole when |e| < M

le| < M subextremal (incl. Schwarzschild)

|e| = M extremal, characterized by vanishing surface gravity

|e| > M superextremal contains a “naked singularity”

vyvyyvyYyvyywyy

Charge is a poor man’s angular momentum!
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Extremal critical collapse

The role of extremality:

» In subextremal RN/Kerr/KN, the black hole interior is foliated by trapped
surfaces

» The property of having a trapped surface is stable, so an asymptotically
subextremal black hole cannot be critical

» Extremal RN/Kerr/KN do not have trapped surfaces!

Definition.
An interpolating family {w)\})\e[o,l] exhibits extremal critical collapse if the critical
data set V) forms an (asymptotically) extremal black hole.

Theorem (Kehle-U. '24).

Extremal critical collapse occurs in the Einstein—Maxwell-charged Vlasov model:

There exist smooth interpolating families for which the critical solution forms an exact
extremal Reissner—Nordstrom black hole after finite time.

We expect the phenomenon of ECC to be more general, but this is the simplest
setting with a well-posed matter model in which one can prove its occurance.
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The Einstein—Maxwell-charged Vlasov system

» General-relativistic version of the special-relativistic Vlasov—Maxwell model
» Charged spacetime (M?*, g, F)
» Distribution function f(x, p) > 0 defined on

P™ = {(x,p) € TM : g(p,p) = —m?,p° > 0},

models a collisionless gas of massive or massless particles with charge e
» Einstein field equations:

Ry,u — %Rg}.u/ =2 (F}JaFua - %guVFaBFaB) +2 [pm pHprdlu‘

W

TEM a
ny TVlasov
Qv

> Maxwell's equations:

VeFuo = e[ pufdu, JEM =eN
Pn‘l

X

———
Np

» Vlasov equation:

o) o d
p_Z _E pepf_ T popo —
(p OxH FasP™pP opt teF ap 8p#) 1

» f = constant along trajectories v : [ — P™ of the Lorentz force
YVt = eFF LYY,

also known as electromagnetic geodesics
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Precise statement of the theorem

Theorem (Kehle-U. '24).

Extremal critical collapse occurs in EMV for both massless and massive particles:

There exist smooth 1-parameter families of spherically symmetric Cauchy data
{Wal}xepo,y for the EMV system on R3 such that the resulting maximally globally
hyperbolic developments {D}¢[o,1) have the following properties:

1. Dy is Minkowski space and there exists A € (0,1) such that for A < A«, D) is

future causally geodesically complete and disperses towards Minkowski space. No
black hole or naked singularity forms.

2. If A = Ay, an extremal Reissner—Nordstrom black hole forms in finite time.
The spacetime contains no trapped surfaces.

3. If A > X, a subextremal Reissner—Nordstrém black hole forms in finite time.
The spacetime contains an open set of trapped surfaces.

In addition, for every A € [0, 1], D, is past causally geodesically complete and is
isometric to Minkowski space near the center r = 0 for all time.
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Penrose diagrams of extremal critical collapse (massless particles)

A < Ax: dispersion A = Ai: extremal BH A > A subextremal BH

it

' no trapped B trapped
NC region
\ %’x

O/ Minkowski O/, Minkowski

I ! I

Corollary.

The very “black hole-ness” of an extremal black hole arising in gravitational collapse
can be unstable. The alternative is dispersion, not a naked singularity.
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Sketch of the proof: bouncing charged Vlasov beams

The problem is to construct charged Vlasov beams that:
» form a Reissner—Nordstrom exterior with specified parameters
» take advantage of EM repulsion and avoid getting too close to r =0

» only form trapped surfaces where we want them to
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Singular toy model: the charged Vaidya metric

2
Py S (1 2 e(';) ) dv? + 2dvdr + r2dQ?
r r

Woant to think of this as describing radial charged null dust

Unfortunately, this “solution” has two fundamental issues:

1. Null dust severely breaks down when the dust reaches r = 0, so dispersion is not
actually possible in a charged Vaidya spacetime.

2. SULLIVAN-ISRAEL '80:
ee

TtOt - TEM+12 (M
r r

) (~8,) ® (~8,)

If r < eé/M, then the dust sector violates the WEC! Dynamical violation of an
energy condition!
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Singular toy model: Ori's bouncing charged null dust

2
e P (1 M) e(‘;) ) dv? + 2dvdr + r2dQ2
r r

Class. Quantum Grav. 8 (1991) 1559-1575.

Charged null fluid and the weak energy condition

Amos Ori
Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA

ORI proposed reinterpreting the charged Vaidya metric as a solution of actual
equations of motion: pressureless charged null fluid

g“yk'uku — 0
Ruv — %Rgﬂv =2 (TE:}J + Pk.ukV)
V*Fpa = epky,
kuka'u - eFuykv
Vu(pk*) =0
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Singular toy model: Ori's bouncing charged null dust

The actual solution of the EoM:

: %) -\ —1
[ . ee e . ee
k:—_(M——)(—Br), pzﬂ(M——)
e r e“r r

dxH
k= T Gkt = eFR kY
ds
If (g, F) is spherically symmetric and k is radial, then k is an eigenvector of F
— k(s) can decay exponentially, x(s) has a limit point at r = e¢/M as s — +o0

///oé/

Proposition (Kehle-U. ’24).

There exists a procedure for generating bouncing charged null dust spacetimes where
the location of the bounce and initial and final RN parameters can be prescribed.
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Singular toy model: Ori's bouncing charged null dust
Theorem (Kehle-U. ’'24).

Ori’s charged null dust model exhibits extremal critical collapse.

A < Ax: dispersion A = Ax: extremal BH A > A,: subextremal BH
s
i
Q\ N no trapped [ trapped
\\\ \\\Q}X region \\\ng,x region
\\‘Q\X
Mo .0
o ~
I @)

O Minkowski ¢y~ Minkowski

I ! I

Unfortunately, Ori's model still has several pathologies:
1. The model is not generally well-posed.
2. Null dust is ill-posed at r = 0.
3. p blows up at the bounce hypersurface.
4. p blows up where the Maxwell field vanishes.
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Obtaining Vlasov spacetimes from dust spacetimes

Most of the work in [KU24] goes into proving the following:

Charged null dust approximation theorem.

Ori’s bouncing charged null dust model arises as a limit of C°° solutions to the
Einstein—Maxwell-charged Vlasov model:

Given a compact subset of an Ori bouncing charged null dust spacetime
(K, 8dust, Fdusts k, p), there exist m; ~, 0 and ¢; \, 0 and spherically symmetric C°
charged Vlasov solutions (K, g;, F;, f;) such that

1. f; is supported on particles of mass m; and angular momentum ~ £; (caveat),
2. g — &dust in ek

3. Fi = Fgust in C°, and

4. [ pufidp — pku, [ pupvfidp — pkuky in the sense of distributions.

Outgoing Vlasov matter likes to remain outgoing.

Once the matter content of a spherically symmetric Einstein—Maxwell-Vlasov solution
reaches “large enough r” and is “sufficiently outgoing,” it will disperse.
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Construction of bouncing charged Vlasov beams

approximate spacelike R want this region to look like
bounce hypersurface . a desingularized bouncing
\\ N Ori dust solution

16 /27

Pirsa: 25040083 Page 16/28



Bouncing charged Vlasov beams—the time symmetric picture

A< A A=A o A> M

- | | .
e \\ 3 \\ 3 \\
+2 0
c \ = c 0
[T} \\ [0} D’ o ,O:'
o 3 o P V] i
I A 0 = e — ~
e S o o i
3 =] . T = R
ko /O %0 iT = oY) r.— 0
E / — N \2\ E .'+
/ NS OX
o // o \\ o \\‘?\x
I ’ Il 0l -0
7’ I
A~ ’ L. 7 . /D’
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Stability of extremal critical collapse

Conjecture.
Extremal critical collapse is stable:

Let {W} be one of the interpolating families given by [KU24]. Then there exists a
“codimension-one submanifold” SB.i; of the spherically symmetric moduli space M
such that Wy € Bix C B, which has the following properties:

1. Bt is critical in the sense that B and € locally lie on opposite sides of Bt

2. If VW € B, the DOC of the maximal Cauchy development of V asymptotically
settles down to an extremal Reissner—Nordstrom black hole.

» This is also a highly nontrivial statement about interiors of dynamical extremal
black holes

» Fundamental difficulty: ARETAKIS instability associated to extremal horizons
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The stability problem for extremal black holes

We first need to focus on dynamics near the event horizon of ERN.
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The stability problem for extremal black holes

We first need to focus on dynamics near the event horizon of ERN.

Question.

In what sense is the DOC of ERN stable as a solution to the Einstein equations? From
considerations of the RN family, can expect at most codimension one stable.
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Linear vs. nonlinear effects in the black hole stability problem

Linear

» Show sufficiently fast decay for gauge invariant quantities (e.g., Teukolsky),
taking into account slow polynomial tails, trapped null geodesics, and redshift

» In fact need to estimate the full linearized system in a well-posed gauge,
which might require “teleological normalization” of the gauge
Nonlinear:

» Need the nonlinearity to "cooperate” and allow the linear decay to persist

Example: JOHN's equation (1979)
D"?¢’ = (Bf(ﬁ)z on R?,_)._c:!-y,z

is linearly stable around ¢ = 0, but experiences finite time blowup for nontrivial data.

A lesson taken from the stability of Minkowski space is that the Einstein equations
have a cooperative structure at Z+ (null structure).
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The linear story for ERN: the Aretakis instability

Consider the scalar (massless) linear wave equation
Heprn® = V¥V0e =0, ()

as an initial “poor man’s linearization” of the Einstein equations around ERN.

Theorem (Aretakis '10).

Generic solutions to (x) on ERN have the following behavior (where v and r are
ingoing Eddington—Finkelstein coordinates):

1. |¢| < Cv~! along HT,

2. Or¢ does not decay along H™,

3. 82¢ ~ v along Ht, and

4. 8k¢p ~ vk—1 along H* for k > 3.

» The origin of 2. is that the (zeroth) Aretakis charge

Hole] = | 8,(r) duw
H+N{v=const}

is conserved along H™.

» LUCIETTI-MURATA-REALL-TANAHASHI and APETROAIE have established
decay/growth hierarchies for Teukolsky on ERN.
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Nonlinear ramifications of the Aretakis instability

The Aretakis instability implies a version of John's example for H* of ERN:

Theorem (Aretakis '13).

The nonlinear wave equation
Heprn @ = (3r¢)2 (x*)

experiences finite time blowup for certain initial data.

This “nonlinear instability” is driven by the linear instability in the following sense:
For a solution to (xx), Hp[¢] is not conserved, but satisfies

8vHo[¢] > c(Ho[¢])?

and hence Hy[¢] — +oo in finite time if Hy[¢] > 0 initially.

Lesson: If ERN is to be stable, we need to identify appropriate null structure in the
nonlinearity of the Einstein equations which is “compatible” with the Aretakis
instability.
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Weak stability of extremal Reissner—Nordstrom in spherical symmetry

Einstein—Maxwell-neutral /real scalar field model
Ruv — %Rg;.w = 2TESA + 2(6u¢8v¢ - %guvaa¢aa¢):

VYFu, =0, VAV,$=0

Theorem (Angelopoulos—Kehle—U. '24).
ERN is codimension-1 stable in the spherically symmetric EMSF model:

Given a scalar perturbation of ERN with ||¢.|| < &, after making a (teleologically
determined) O(&?) adjustment to the mass, the following holds:

1. A black hole forms,

2. supy_ |g — gerN| — 0 uniformly up to HT,

3. supy, [¢] = 0,

4. 8,¢ remains approximately constant on H*, and
5

. for “generic” data, 0%2¢ ~ v along H*.

» Due to the coupling of the scalar field to the geometry, suitable components and
derivatives of R,,,, exhibit non-decay and growth phenomena along H™.

» We identify the “right” structure in the Einstein equations that allows the
Aretakis instability for ¢ to be consistent with “weak stability” of g.
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Local critical behavior in the neutral scalar field model

data n g'ndisp: 1o blaCk hOIe data. in mmﬁﬂb: leoo| o Moo data in m’tsub: ‘eoo| < Moc
‘fj}x . trapped region \Ejg,x
~ y .+

1 7

Conjecture.
Near ERN, the solution space of the spherically symmetric EMSF model can be

decomposed as Maisp U Mgtan U My, where
1. Maisp consists of solutions that do not form a black hole in D™ (C; U Cout),

2. Maiab is @ C Banach hypersurface and consists of solutions asymptotic to ERN,

3. Mqup consists of solutions which are asymptotically subextremal.

This has been observed numerically by MURATA-REALL-TANAHASHI '13
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Stability of ERN for charged Vlasov matter

Conjecture.

An appropriate version of the Theorem of [AKUZ24] holds for charged, massless,
self-gravitating Vlasov matter: ERN is codimension-1 stable in the
Einstein—Maxwell-Vlasov model.

» This would be important evidence towards the codimension-1 property of
extremal critical collapse in the charged Vlasov model.

» Complicated by several technical issues absent in the neutral scalar field model:
trapping at the photon sphere, dynamical charge,
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The vacuum case?

In principle, extremal critical collapse and its stability can be conjectured to also hold
true in vacuum with extremal Reissner—Nordstrom replaced by extremal Kerr.

However, this is a very difficult problem which also relates to understanding

» the formation of extremal black holes in vacuum (the case |a| € M has been
resolved by KEHLE-U. '23)
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interpolating families

Minkowski space

future-complete spacetimes

Thank you!
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