Title: Lecture - Causal Inference, PHYS 777

Speakers: Robert Spekkens

Collection/Series: Causal Inference (Elective), PHYS 777, March 31 - May 2, 2025

Subject: Quantum Foundations **Date:** April 11, 2025 - 11:30 AM

URL: https://pirsa.org/25040040

Pirsa: 25040040 Page 1/55

The observational and interventional dominance orders of causal structures

arXiv:2502.07891

arxiv:2407.01686

Pirsa: 25040040 Page 2/55

Pirsa: 25040040 Page 3/55

Observe probing scheme on X

Record value of X without disturbing

Do Probing scheme on X

Ignore value of X + input new version of X

Observe-and-do probing scheme on X

Record value of X + input new version of X

Pirsa: 25040040 Page 4/55

Observe probing scheme on X

$$P_{XYZ} = P_{Y|XZ} P_{X|Z} P_Z$$

Do Probing scheme on X

$$P_{YZ|X^\sharp} = P_{Y|X^\sharp Z} P_Z$$

Observe-and-do probing scheme on X

$$P_{YX^{\flat}Z|X^{\sharp}} = P_{Y|X^{\sharp}Z}P_{X^{\flat}|Z}P_Z$$

Observe probing scheme on X

Record value of X without disturbing

Observe-and-do probing scheme on X

Record value of X + input new version of X

Pirsa: 25040040 Page 6/55

Definition: A probing scheme is said to be informationally complete if it can learn everything that can be learned by any probing scheme restricted to the visible nodes

A probing scheme that implements observe-anddo on every visible node X is informationally complete

Pirsa: 25040040 Page 7/55

Restriction of scope to sets of causal structures with a fixed ordering of visible nodes

Pirsa: 25040040 Page 8/55

If causal relations among variables are described by a DAG, then these variables must be **temporally localized**

What about cases where variables are not temporally localized?

Example: price and demand

But if we coarse-grain a number of temporally localized variables into a single temporally delocalized variable

We lose the property of acyclicity, i.e., we leave the DAG framework

Pirsa: 25040040 Page 9/55

Note also: knowledge regarding temporal ordering is a prerequisite for implementing fully general probing schemes in practice

Therefore, we consider the set of causal structures consistent with a **fixed temporal ordering** of the visible nodes

Pirsa: 25040040 Page 10/55

Observe&Do realizability of a distribution

 $P_{Y^{\flat}X^{\flat}Z^{\flat}|X^{\sharp}Y^{\sharp}Z^{\sharp}} = P_{Y^{\flat}|X^{\sharp}Z^{\sharp}}P_{X^{\flat}|Z^{\sharp}}P_{Z^{\flat}}$

Pirsa: 25040040 Page 11/55

pDAG (partitioned DAG) = DAG where the nodes are partitioned into visible and latent Vnodes(G) = visible nodes of G

Lnodes(G) = latent nodes of G

 M_{obs} (G, $\mathbf{c}_{\text{Vnodes(G)}}$) = The set of probability distributions over visible variables of cardinalities $\mathbf{c}_{\text{Vnodes(G)}}$ that are observationally realizable by pDAG G.

 $M_{O\&D}$ (G, $\mathbf{c}_{Vnodes(G)}$) = The set of probability distributions over visible variables of cardinalities $\mathbf{c}_{Vnodes(G)}$ that are observe&do realizable by pDAG G.

Pirsa: 25040040 Page 12/55

Observational dominance

Definition: Let G and G' be two pDAGs such that Vnodes(G) = Vnodes(G'). We say that G **observationally dominates** G' (denoted $G \succeq G'$) when the set of observationally realizable distributions of G includes the set of observationally realizable distributions of G', regardless of the assignment of cardinalities of the visible variables.

That is,
$$\mathcal{G} \succeq_{\mathrm{obs}} \mathcal{G}' \quad \text{iff} \quad \begin{cases} \forall \vec{c}_{\mathtt{Vnodes}(\mathcal{G})} \in \mathbb{N}^{|\mathtt{Vnodes}(\mathcal{G})|} \colon \\ \mathcal{M}_{obs}(\mathcal{G}', \vec{c}_{\mathtt{Vnodes}(\mathcal{G}')}) \subseteq \mathcal{M}_{obs}(\mathcal{G}, \vec{c}_{\mathtt{Vnodes}(\mathcal{G})}) \end{cases}$$

where M_{obs} (G, $\mathbf{c}_{\text{Vnodes(G)}}$) = The set of probability distributions over visible variables of cardinalities $\mathbf{c}_{\text{Vnodes(G)}}$ that are observationally realizable by pDAG G.

Pirsa: 25040040 Page 13/55

Dominance ($G \geq G'$)

Nondominance ($G \not\ge G'$)

Strict dominance (G > G')

Equivalence ($G \simeq G'$) = mutual dominance ($G \succeq G'$ and $G' \succeq G$)

Incomparability = mutual nondominance ($G \not\ge G'$ and $G' \not\le G$).

Observe&Do dominance

Definition: Let G and G' be two pDAGs such that Vnodes(G) = Vnodes(G'). We say that G *Observe&Do dominates* G' (denoted $G \succeq G'$) when the set of O&D-realizable distributions of G includes the set of O&D-realizable distributions of G', regardless of the assignment of cardinalities of the visible variables.

That is,
$$\forall \vec{c}_{\mathsf{Vnodes}(\mathcal{G})} \in \mathbb{N}^{|\mathsf{Vnodes}(\mathcal{G})|} : \\ \mathcal{G} \succeq_{\mathsf{O}\&\mathsf{D}} \mathcal{G}' \quad \text{iff} \quad \mathcal{M}_{O\&D}(\mathcal{G}', \vec{c}_{\mathsf{Vnodes}(\mathcal{G}')}) \subseteq \mathcal{M}_{O\&D}(\mathcal{G}, \vec{c}_{\mathsf{Vnodes}(\mathcal{G})}).$$

where $M_{O\&D}$ (G, $\mathbf{c}_{Vnodes(G)}$) = The set of probability distributions over visible variables of cardinalities $\mathbf{c}_{Vnodes(G)}$ that are Observe&Do realizable by pDAG G.

Pirsa: 25040040 Page 15/55

When is it impossible to distinguish two causal structures even when there is access to informationally complete probing schemes?

Pirsa: 25040040 Page 16/55

Exogenization rule

Pirsa: 25040040 Page 17/55

Pirsa: 25040040 Page 18/55

Pirsa: 25040040 Page 19/55

Pirsa: 25040040 Page 20/55

Pirsa: 25040040 Page 21/55

Exogenization rule

Pirsa: 25040040 Page 22/55

Eliminating redundant latents rule

Pirsa: 25040040 Page 23/55

Pirsa: 25040040 Page 24/55

Definition: an mDAG with node set V is a pair (D, B), where D is a DAG over V (which we refer to as the directed structure) and B is a simplicial complex over V (the elements of which describe the nodes that share a latent common cause)

Definition: An abstract Simplicial Complex over a finite set V is a set B of subsets of V such that

- B includes all singleton sets
 {v} ∈ B for all v ∈ V
- If a subset of V is in B, then so are all of its subsets If $S \subseteq T \subseteq V$ and $T \in B$, then $S \in B$

Pirsa: 25040040 Page 25/55

Pirsa: 25040040 Page 26/55

Definition: an mDAG with node set V is a pair (D, B), where D is a DAG over V (which we refer to as the directed structure) and B is a simplicial complex over V (the elements of which describe the nodes that share a latent common cause)

Definition: An abstract Simplicial Complex over a finite set V is a set B of subsets of V such that

- B includes all singleton sets
 {v} ∈ B for all v ∈ V
- If a subset of V is in B, then so are all of its subsets If $S \subseteq T \subseteq V$ and $T \in B$, then $S \in B$

Pirsa: 25040040 Page 27/55

Informationally complete probing schemes (such as Observe&Do) cannot discriminate pDAGs that are associated to the same mDAG.

Therefore, having different mDAGs is necessary for Observe&Do inequivalence. We will see that it is also sufficient.

Pirsa: 25040040 Page 28/55

Pirsa: 25040040 Page 29/55

Let G and G' be two mDAGs with the same sets of nodes.

G structurally dominates G' if:

(i) the directed structure of G' can be obtained from the directed structure of G by dropping edges

DirectedEdges(G') \subseteq DirectedEdges(G)

(i) the simplicial complex of G' can be obtained from the simplicial complex of G by dropping faces

 $Faces(G') \subseteq Faces(G)$

Pirsa: 25040040 Page 30/55

Pirsa: 25040040 Page 31/55

Pirsa: 25040040 Page 32/55

Special cases of observational dominance order

Pirsa: 25040040 Page 33/55

Pirsa: 25040040 Page 34/55

For confounder-free mDAGs

Observational dominance of mDAGs

Structural dominance of mDAGs

$$G \succeq_{obs} G'$$

$$G \succeq_{struct} G'$$

For confounder-free mDAGs, the conditional independence relations implied by the d-separation relations are **all** the constraints on the distribution

Recall the Markov condition characterizing all compatible distributions for a confounder-free mDAG

We saw that this set can also be characterized by the set of conditional independence relations described by the local Markov condition together with semi-graphoid axioms

Pirsa: 25040040 Page 36/55

For confounder-free mDAGs

Observational Structural dominance of mDAGs dominance of mDAGs
$$G \succeq_{obs} G'$$
 $G \succeq_{struct} G'$

If half: The case of structural equivalence is trivial. Strict structural dominance means that there is a directed edge in G that is not in G'. This will lead to G' having a set of d-separation relations (and hence conditional independence relations) that is a strict superset of that of G. As CI relations exhaust the constraints for confounder-free mDAGs, we conclude strict obs'l dominance of G over G'.

Pirsa: 25040040 Page 37/55

For confounder-free mDAGs

Observational Structural dominance of mDAGs dominance of mDAGs $G \succeq_{obs} G'$ $G \succeq_{struct} G'$

Only if half: Consider the contrapositive. Lack of structural dominance means that there is a directed edge in G' that is not in G. This will lead to a CI relation in G that is violated in G', hence no obs'l dominance of G over G'.

Pirsa: 25040040 Page 38/55

IC* algorithm and PC algorithm

Set of conditional independence relations in observational distribution

Feasible and infeasible confounder-free mDAGs

Pirsa: 25040040 Page 39/55

For directed-edge-free mDAGs

Observational dominance of mDAGs

Structural dominance of mDAGs

$$G \succeq_{obs} G'$$

$$G \succeq_{struct} G'$$

If half: If the simplicial complex of G has a face that G' lacks, then G can realize any distribution that G' can, and others besides. Specifically, perfect correlation among a set of nodes is possible if and only if they are part of the same face.

Pirsa: 25040040

For directed-edge-free mDAGs

Observational dominance of mDAGs

Structural dominance of mDAGs

$$G \succeq_{obs} G'$$

$$G \succeq_{struct} G'$$

Only if half: Consider the contrapositive. Lack of structural dominance means that there is a face in G' that is not in G. In this case there there is a set of nodes that have a common ancestor in G' but not in G. Thus perfect correlation among these is achievable in G' but not in G. Thus, there is no obs'l dominance of G over G'.

Pirsa: 25040040

Observe&Do dominance of mDAGs

Observational dominance of node-split mDAGs

Structural dominance of node-split mDAGs

$$G \succeq_{O\&D} G'$$

$$split(G) \succeq_{obs} split(G')$$

 $split(G) \succeq_{struc} split(G')$

In G, a dropped directed edge need not generate a new CI relation, but in split(G) it does because flat nodes have no parents

In G, dropping a face of the simplicial complex need not generate a new CI relation, but in split(G) it does because flat nodes do not have any directed edges between them.

Pirsa: 25040040 Page 43/55

Observe&Do dominance of mDAGs

Observational dominance of node-split mDAGs

Structural dominance of node-split mDAGs

$$G \succeq_{O\&D} G'$$

 $split(G) \succeq_{obs} split(G')$

 $split(G) \succeq_{struc} split(G')$

Pirsa: 25040040 Page 45/55

72 mDAGs

Pirsa: 25040040 Page 46/55

Pirsa: 25040040 Page 47/55

Pirsa: 25040040 Page 48/55

72 mDAGs

Pirsa: 25040040 Page 49/55

Exogenization rule

Pirsa: 25040040 Page 50/55

Eliminating redundant latents rule

Pirsa: 25040040 Page 51/55

Exogenization rule

Pirsa: 25040040 Page 52/55

72 mDAGs

Pirsa: 25040040 Page 53/55

Pirsa: 25040040 Page 54/55

72 mDAGs

Pirsa: 25040040 Page 55/55