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“statisticians are invariably motivated by causal questions
but the peculiar nature of these questions is that they
cannot be answered, or even articulated, in the traditional
language of statistics.

[...]

causation is not merely an aspect of statistics; it is an
addition to statistics, an enrichment that allows statistics to
uncover workings of the world that traditional methods
cannot”

From: J. Pearl, M. Glymour and N. Jewell, ‘Causal
Inference in Statistics’
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Simpson’s paradox
IN statistics
and its causal resolution




P(recovery | drug) > P(recovery | no drug)

P(recovery | drug, male) < P(recovery | no drug, male)

P(recovery | drug, female) < P(recovery | no drug, female)

Recovery probability

no drug

male 180/300 = 60% 70/100 = 70%

female 20/100 = 20% 90/300 = 30%

combined 200/400 = 50% 160/400 = 40%
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The Einstein-Podolsky-Rosen paradox
In quantum theory
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Y is ontic Y is epistemic

(51 (251
= two different ways = two different ways
Yo  the world could be VS. o of having incomplete

information about

the world

Example: Example:
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Upon learning X
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Upon learning X
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Y is ontic

1,0
10,0
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Upon learning X
1
51 — g x

Set S=1
get X=0

get X=1 —

...............

Like “treatment influences recovery”
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Upon learning X
1
51 — g x

“Spooky action at a distance”
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Y is epistemic

Y10
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Upon learning X Y
1
51 — g x

irsa: 25040036 Page 23/39



Upon learning X
1
51 — g x

Set S=1
get X=0

get X=1
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Upon learning X
1
51 — g x

Set S=1
get X=0

get X=1

Like “treatment informs us about recovery”
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Upon learning X Y
1
51 — g x
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Upon learning X
1
51 — g x

Like “treatment informs us about recovery”
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“W, does not describe the totality of
what “really” pertains to the partial
system 2, rather only what we know
about it in this particular case.”

“l incline to the opinion that the wave

function does not (completely) describe
what is real, but only a to-us-empirically-
accessible maximal knowledge
regarding that which really exists.”
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Upon learning X
1
51 — g x

Like “treatment informs us about recovery”
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Birth weight paradox

P(mortality | born to smoker) > P(mortality | born to nonsmoker)

P(mortality | born to smoker, LBW) < P(mortality | born to nonsmoker, LBW)

Can a mother being a smoker really reduce the risk of mortality for low
birth weight children?
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Birthweight
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Birthweigh

Other
conditions
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Birth weight paradox
P(mortality | born to smoker) > P(mortality | born to nonsmoker) \/

P(mortality | born to smoker, LBW) < P(mortality | born to nonsmoker, LBW)

Birthweight

Dther
conditions

Therefore: marginalize over colliders on the
“backdoor path”
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Post-select on
outcome
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Post-select on Y is ontic
outcome
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Post-select on Y is epistemic
outcome

X

9) (Y] B

Given post-selection, your posterior
about C tracks your prior about A
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What hope do we have of making sense
of quantum theory if we do not
understand how to resolve Simpson’s or
Berkson’s paradox?
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“[...] our present Quantum
Mechanical formalism [...] is a
peculiar mixture describing in part
realities of Nature, in part
incomplete human information
about Nature all scrambled up by
Heisenberg and Bohr into an

omelette that nobody has seen

how to unscramble.”

E.T. Jaynes, 1989
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