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Abstract:
Astrophysical compact objects, neutron stars, and black holes are powerful sources of non-thermal electromagnetic emission
spanning many orders of magnitude in photon energy, from radio waves to multi-TeV gamma rays. Despite multiple
groundbreaking observational discoveries done in recent years, our understanding of the dynamics of relativistic plasmas that
produce these emission signatures remains limited. In this talk, | will describe a few successful examples of modeling the

observed light coming from these remarkable astrophysical laboratories using various numerical approaches. | will focus on

advances in understanding coherent radio emission of rotating neutron stars, pulsars, and multi-wavelength flares from
accreting black holes.
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Wiy Now? (NEUTRON STARS)
EXCITING, UNPRECEDENTED MULTI-WAVELENGTH OBSERVATIONS

Vela pulsar (P2)
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seconds since 2020-04-28T14:34:24.0 UTC, geocenter

FRB from galactic magnetar (2020) "Aurora" on a millisecond pulsar by NICER (2019+) Multi-TeV pulsed emission from Vela (2023)

Understanding the behavior of collisionless relativistic plasmas is a key!
2
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Whny Now? (BLACK HOLES)
EXCITING, UNPRECEDENTED MULTI-WAVELENGTH OBSERVATIONS

PKS1424+240
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Orbiting "hotspots" by Gravity (2018+) BH shadow by EHT (2019+) Tentative lceCube neutrino sources (2022+)

Understanding the behavior of collisionless relativistic plasmas is a key!
3

Pirsa: 25030178 Page 4/28




THEORETICAL APPROACHES

E— ((Foroe free clectrodynamics

Plasma without the plasma
v OK in highly magnetized regions

Magnetohydrodynamics

Plasma as an ideal collisional fluid
¥ e.g., no thermal conduction, pressure is same in all directions.
OK as a first approximation for global dynamics

Kinetic physics
First-principles description

¥ includes non-ideal effects (e.g., pressure is different along and
across magnetic field, heat flux), describes particle acceleration
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Way Do WE NEep KINETIC PHYSICS?

need to explain and predict observables, i.e., non-thermal radiation ("power-laws")
coretical answer #1: collisionless plasmas do not always behave as ideal fluids
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tical answer #2: small scales can affect large scales

Bale et al., 2008, PRL
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Small-scale plasma instabilities control
the plasma-fluid characteristics
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Rate of pair creation controls the shape of
the NS magnetosphere

5

Uzdensky et al., 2014, ApJ

——

equatorial current sheet

Rate of reconnection controls
dissipation in the NS magnetosphere
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Prasma Praysics oN A compPUTER: (GR)(R)PIC

Solving Maxwell’s equations on the grid

E. B

Computing the EM force on particles

(GR) = general relativistic
(R) = radiation reaction force, photon emission, multiple pair production mechanisms
PIC = particle-in-cell X
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NEUTRON STARS:
PuULSARS
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NEUTRON STARS

1D gap approximation
LC pair production
é(erg s

— T B«(Q)

Almost perfect clocks: measure period.

Measure magnetic fields from the
observed spin down.

Rotation powered: pulsars.
Magnetically powered: magnetars.

Millisecond pulsars: spun up by accretion.

Broad-band electromagnetic emitters: i s 7 L oLl yray pulsars
. W 2 S - £ Pulsars with giant pulses

from radio to gamma-rays. : AR p

o RRATs

o Pulsars with nullings

Intermittent pulsars

. All radio pulsars and magnetars

103 10
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ot dischargle WHAT IS A PULS AR Crab B1509-58 Vela
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Unipolar induction P~33ms P~150ms P~89ms
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ProBES OF FUNDAMENTAL PHYSICS

"Aurora" on a millisecond pulsar by NICER (2019+)

|\ Nucleonic
\.I\ ) ---- Quark
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Strong-field gravity tests
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Detection of the gravitational wave Equation of state of nuclear matter Physics Beyond Standard Model:
background e.g., axions

Many more important examples: probes of cosmological baryons (FRBSs), effects of superconductivity in the core and
superfluidity in the crust, strong field QED-plasma interactions.

YET WE DO NOT KNOW HOW THEY ACTUALLY SHINE!

10
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INCOHERENT VS COHERENT RADIATION

single particle
Nx
emission

Examples:
Multiple synchrotron, inverse Compton
radiation sources in astrophysics

Cause:
Accelerated charged particles
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single particle | high brightness
N2 at e
X emission temperatures

Examples:
radio emission of lo-Jupiter, solar radio bursts, EMP,
laboratory (e.g., free electron laser)

Cause:
Plasma instabilities, collective motions
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STANDARD PUILSAR

Force-free paradigm

: dp,
pE+JXB = _dr—+ pyéssure, and E - B =0

. = Jj=Jj{E,VXE,V-E,B,VXB)
+ Maxwell’s equations

® closed-/open-field-line regions
® cquatorial current sheet
® field lines are asymptotically radial

® predicts the spin-down law
H2Q4
c3

Contopoulos+ (1999), Spitkovsky (2006), Kalapotharakos (2009), Petri (2012),
Tchekhovskoy+ (2014) (MHD)
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THREE-DIMENSIONAL MAGNETOSPHERES

0.0 0.5

j.cy/RLC

Magnetic dissipation
and high-energy
emission production
occurs in unstable
current sheets

. . plasma density: nr* |
(c) - R <« 1 Hakobyan, Philioppov, Spitkovsky, 2023 (ApJ)
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HicH-ENERGY EMISsION MODELING
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H=175202  J0633+1746, P392371s Philippov, Spitkovsky, 2018 (ApJ)

Double-peaked lightcurves
are generic

W. Counts / bin

Spectral modeling from local reconnection simulations suggests that emitting particles have Lorentz factors

y 2 107 for Vela-like pulsars — consistent with the multi-TeV HESS detection.
(see Chemoglazov, Hakobyan, Philippov, 2023, ApJ)

Prediction: CTA will see moderately energetic y-ray pulsars as multi-TeV sources.
Chemoglazov, Hakobyan, Philiopov, in prep
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Por.Ar Rapio Emission

Lyne, Manchester (1988)

radio beam f

1039-19
408 MHz

Neutron
star

2154+40 0628-28
1420 MHz 611 MHz

open
field lines !

FLUX DENSITY

Closed |
field lines :light
:cylinder

0 20 40
LONGITUDE (dea)

® |n most cases we see one short pulse per period.

® Beam width is related to the polar cap size.
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LLocAL SIMULATION OF 2D DISCHARGE

® |ntermittency of the discharge results in
production of coherent currents that are
"screening" the electric field.

® Oblique "screening" waves are
electromagnetic and superluminal; thus,
can escape from the magnetosphere.

Neutron Star

e The power is fixed at ~ 10™*L4 (Tolman,
Philippov, Timokhin, 2022).

® Subsequent works explain the core-cone
structure of the emission beam.

Vg ™ \/ dme*kng (117> ) Im] 127 ~ 50\/ KsB12/ Py 117y GHz

R,./2
See also Cruz et. al. 2021,
Philippov, Timokhin, Spitkovsky 2020 (PRL) Bransgrove et. al. 2023 (ApJL)
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SGR A AND M87*
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conditions imply macroscopically
collisionless, but strongly
magnetized plasma

large-scale jet is observed for M87*

Multi-wavelength flares (NIR/X-ray
for SgrA*, TeV for M87)
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EHT, 2019 (ApJL) GRAVITY collaboration, 2018 (A&A)
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THEORETICAL SCHEME: PLASMAS AROUND BLACK HOLES

State-of-the-art MHD
el

e.g., Tchekhovskoy 2015

Blandford, Znajek 1977
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[ L.ARGE FLARES

Increase of the magnetic pressure in

the jet leads to creation of intermittent
current sheets. At extreme resolution
they are plasmoid-unstable.

Magnetic flux leaves the BH through
reconnection ("flux eruption"), and the
cycle repeats.

Alternative picture: “ejection” disk,
ergomagnetosphere, FFE turbulence.
(Blandford, Globus, 2022).

MAD: Bisnovaltyi-Kogan, Ruzmaikin, 1974; Narayan, Igumenshchev et al.,
20083, Tchekhovskoy, Narayan, McKinney, 2011

10000 Ripperda, Liska, Chatterjee, et. al. (including Philippov), 2022 (ApJL)

23
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Toy MobpEL: * * BALDING” Brack HoLE

(See also Lyutikov, 2011, PRD)

The time for magnetic flux to escape the event horizon is controlled by the
plasma physics of magnetic reconnection
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Bransgrove, Ripperda, Philippov, 2021,
(cover of PRL)
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ErreEcTs OF COLLISIONLESS PHYSICS ON GLOBAL SCALES?

Observed anisotropy in the solar wind
Probability Density

10~3 1072

e Self-regulated pressure anisotropies and heat fluxes may have a S
dynamical effect on the global evolution lom. e ol ode
(initial studlies by Chandra et. al., 2015, Foucart et. al., 2017) ’

» Reconnection is faster, 0.1V, vs 0.01V}, because E-field is
provided by a different effect.

parallel 2 oblique
firehose &N firehose

10 10° 107
‘;”I p
Bale et al., 2009 (PRL)
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2D "MAD"” v GRPIC

e 2D axisymmetric accretion. *:

Zero angular momentum flow
Motivated by the stellar-wind fed model,;
Ressler et. al., 2021. New simulations
suggest potential alternation of jet - no jet
states in this regime (Galishnikova,
Philippov et al., 2025).

-

e fy=P/Pg=40rl0, and
m./m,=1..3

00 1000

Major changes in the : g ; gy g 109
temperature profile (significant : ' : :
heat flux in highly magnetized
regions) and in the rate of
eruptions.

20

Non-thermal electrons in 10° 102

erupting current sheets.

Galishnikova, Philippov, Quataert et al. PRL, 2023
(cover of PRL) 27
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FuTUurRE OBSERVATIONS

GENZ2

CTA: TeV sources lceCube gen2: robust neutrino sources

DSA-2000: FRBs and (?) precursors to NS mergers ngEHT: black hole movies; BHEX LHASSO+: highest-energy photons

X-rays (AXIS?, IXPE+), sensitive MeV mission (COSI, AMEGO-X?), etc.

29
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(CONCLUSIONS

Origin of radiation from neutron stars has been a puzzle since 1967. Kinetic simulations are finally
addressing this from first principles.

Flux eruption in magnetically-arrested accretion flows is accompanied by formation of large-scale
reconnecting current sheets that can power multi-wavelength flares.

The future of neutron star and black hole observations and relativistic plasma astrophysics is bright!
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LLARGE FLARES ' ?

AP
MAGNETIC RECONNECTION NEAR THE EVENT HORIZON _E’

Increase of the magnetic pressure in

the jet leads to creation of intermittent
current sheets. At extreme resolution

they are plasmoid-unstable.

Magnetic flux leaves the BH through
reconnection (“flux eruption"), and the
cycle repeats.

Alternative picture: “ejection” disk,
ergomagnetosphere, FFE turbulence.
(Blandford, Globus, 2022).

MAD: Bisnovalyi-Kogan, Ruzmaikin, 1974; Narayan, Igumenshchev et al.,
20083, Tchekhovskoy, Narayan, McKinney, 2011

10000 Ripperda, Liska, Chatterjee, et. al. (including Philippov), 2022 (ApJL)

23
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2D "MAD"” v GRPIC

e 2D axisymmetric accretion.
Zero angular momentum flow

Motivated by the stellar-wind fed model, ' | ' [— Greic
Ressler et. al., 2021. New simulations 00 ( GRMHD |}
suggest potential alternation of jet - no jet = =
states in this regime (Galishnikova,
Philippov et al., 2025).
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heat flux in highly magnetized
regions) and in the rate of
eruptions.
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T - —— T ——
Non-thermal electrons in 10! 10° 10?

erupting current sheets.

Galishnikova, Philippov, Quataert et al. PRL, 2023 R |
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THREE-DIMENSIONAL MAGNETOSPHERES

slice along B

Magnetic dissipation
and high-energy
emission production
occurs in unstable
current sheets
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- 4 plasma density: nr? .,“’ _ A

<
(c) - - Hakobyan, Philioppov, Spitkovsky, 2023 (ApJ)
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