Title: The sewing-factorization theorem for \$C 2\$-cofinite VOAs

Speakers: Hao Zhang

Collection/Series: Mathematical Physics

Subject: Mathematical physics

Date: March 20, 2025 - 11:00 AM

URL: https://pirsa.org/25030177

Abstract:

In this talk, I will present a sewing-factorization theorem for conformal blocks in arbitrary genus associated to a (possibly nonrational) \$C_2\$-cofinite VOA \$V\$. This result gives a higher genus analog of Huang-Lepowsky-Zhang's tensor product theory. Moreover, I will explain the relation between our result and pseudotraces, and confirm some of the conjectures by Gainuditnov-Runkel. The relationship between our result and coends will also be discussed. The talk is based on an ongoing project (arXiv: 2305.10180, 2411.07707) joint with Bin Gui.

Pirsa: 25030177 Page 1/20

The sewing-factorization theorem for C_2 -cofinite VOAs

Hao Zhang Tsinghua University

Į

March 2025
Perimeter Institute
Joint work with Bin Gui
arXiv:2305.10180, 2411.07707

(ロ) (部) (主) (主) き り(0)

larch 2025 1 / 19

Page 2/20

Hao Zhang

Pirsa: 25030177

The category Rep(V)

- We start with a C_2 -cofinite and self-dual vertex operator algebra \mathbb{V} , which is not necessarily rational.
- $\operatorname{Rep}(\mathbb{V})$, the tensor category of (grading-restricted generalized) \mathbb{V} -modules defined by Huang-Lepowsky-Zhang, is a Grothendieck-Verdier category (Allen, Lentner, Schweigert, Wood 2021). $\operatorname{Rep}(\mathbb{V})$ is not necessarily semisimple, but is conjectured to be rigid.
- The tensor product of $\operatorname{Rep}(\mathbb{V})$ is denoted by \boxtimes , called fusion product. \otimes means the usual tensor product over \mathbb{C} .
- The Deligne product $\operatorname{Rep}(\mathbb{V}) \otimes^{\operatorname{Del}} \operatorname{Rep}(\mathbb{V})$ is equivalent to $\operatorname{Rep}(\mathbb{V} \otimes \mathbb{V})$ (McRae 2023) with a bi-functor $\otimes : \operatorname{Rep}(\mathbb{V}) \times \operatorname{Rep}(\mathbb{V}) \to \operatorname{Rep}(\mathbb{V} \otimes \mathbb{V}).$

Hao Zhang March 2025 2 / 19

Pirsa: 25030177 Page 3/20

Conformal blocks

• Choose an N-pointed compact Riemann surface with local coordinates $\mathfrak{X}=(C;x_1,\cdots,x_N;\eta_1,\cdots,\eta_N)$, or equivalently, a Riemann surface with N boundary circles. Associate a $\mathbb{V}^{\otimes N}$ -modules \mathbb{W} to x_1,\cdots,x_N . A **conformal block** is a linear map $\psi:\mathbb{W}\to\mathbb{C}$ invariant under certain action of \mathbb{V} and \mathfrak{X} on \mathbb{W} . The spaces of conformal blocks is denoted by $CB(\mathfrak{X},\mathbb{W})$, or

• In particular, you may choose $\mathbb{W} = \mathbb{W}_1 \otimes \cdots \otimes \mathbb{W}_N$. In general, \mathbb{W} cannot be expressed as a tensor product of \mathbb{V} -modules.

March 2025 3/19

Hao Zhang

Pirsa: 25030177

Propagation of conformal blocks

Theorem (Propagation of CB (Zhu 94))

The linear map $\varphi \mapsto \widetilde{\varphi}$ defined by $\widetilde{\varphi}(w) = \varphi(w \otimes \mathbf{1})$ gives an isomorphism

$$CB() \xrightarrow{\Sigma} CB()$$

Propagation of CB allows us to add points with vacuum inputs to conformal blocks freely.

Hao Zhang

ICH 2023 4/19

Higher genus dual fusion products

Theorem (Gui-Z. 23, arXiv:2305.10180)

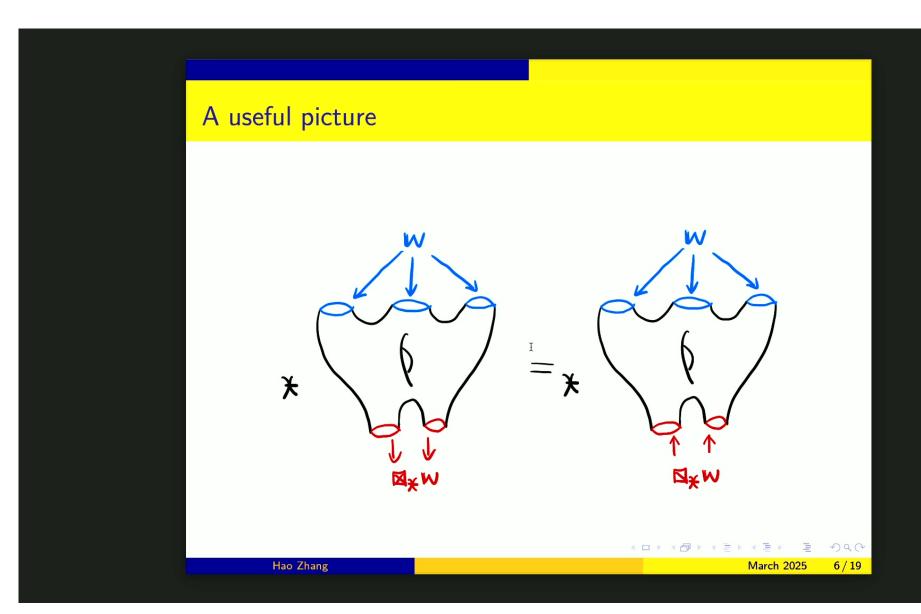
Let $\mathfrak X$ be an (N+L)-pointed surface with N incoming points and L outgoing points. Let $\mathbb W$ be a $\mathbb V^{\otimes N}$ -module. Then there exists a

for any $\mathbb{V}^{\otimes L}$ -module \mathbb{M} , the linear map

$$\operatorname{Hom}_{\mathbb{V}^{\otimes L}}(\mathbb{M}, \mathbb{D}_{\mathfrak{X}}\mathbb{W}) \to CB(\ ^{\mathsf{W}} \underset{*}{ \longrightarrow} \ ^{\mathsf{M}}) \text{ given by }$$

 $\varphi \mapsto \omega_{\mathfrak{X}} \circ (\mathbf{1} \otimes \varphi)$ is an isomorphism.

 $\square_{\mathfrak{X}}\mathbb{W}$ is called **dual fusion product**. $\omega_{\mathfrak{X}}$ is called **canonical conformal block**. $\boxtimes_{\mathfrak{X}}\mathbb{W} = (\square_{\mathfrak{X}}\mathbb{W})'$ is called **fusion product**.



Pirsa: 25030177 Page 7/20

Geometric realization of coends

Write
$$\mathfrak{P}=$$
 and $\mathfrak{Q}=$.

Theorem (Gui-Z. to appear)

- $\boxtimes_{\mathfrak{P}} : \operatorname{Rep}(\mathbb{V} \otimes \mathbb{V}) \to \operatorname{Rep}(\mathbb{V})$ is the lift of $\boxtimes : \operatorname{Rep}(\mathbb{V}) \times \operatorname{Rep}(\mathbb{V}) \to \operatorname{Rep}(\mathbb{V})$ to the Deligne product.
- $\square_{\mathfrak{Q}}(\mathbb{V}) = \int^{\mathbb{X}} \mathbb{X}' \otimes \mathbb{X} \in \operatorname{Rep}(\mathbb{V} \otimes \mathbb{V}).$
- $\boxtimes_{\mathfrak{P}}(\boxtimes_{\mathfrak{Q}}(\mathbb{V})) = \int^{\mathbb{X}} \mathbb{X}' \boxtimes \mathbb{X} := L \in \operatorname{Rep}(\mathbb{V}).$

If \mathbb{V} is in addition rational, then $\square_{\mathfrak{Q}}(\mathbb{V}) = \bigoplus_{\mathbb{X} \in \operatorname{Irr}} \mathbb{X}' \otimes \mathbb{X}$ and $L = \bigoplus_{\mathbb{X} \in \operatorname{Irr}} \mathbb{X}' \boxtimes \mathbb{X}$.

←□ → ←□ → ← = → ← = → へ ()

Vlarch 2025 7 / 19

Dinatural transformation of coends

 By the universal property of dual fusion products and propagation, we have an isomorphism

$$\operatorname{End}_{\mathbb{V}}(\mathbb{X}) \simeq CB(\bigcap_{\mathbb{V}} \bigcap_{\mathbb{X}} \operatorname{Hom}_{\mathbb{V}^{\otimes 2}}(\mathbb{X}' \otimes \mathbb{X}, \square_{\mathfrak{Q}} \mathbb{V})$$

for each $X \in \text{Rep}(V)$.

Hao Zhang

- The identity map of \mathbb{X} corresponds to a morphism $\iota_{\mathbb{X}}: \mathbb{X}' \otimes \mathbb{X} \to \square_{\mathfrak{Q}} \mathbb{V}$ in $\operatorname{Rep}(\mathbb{V} \otimes \mathbb{V})$.
- Applying to functor $\boxtimes_{\mathfrak{P}} : \operatorname{Rep}(\mathbb{V} \otimes \mathbb{V}) \to \operatorname{Rep}(\mathbb{V})$, we get a morphism $\iota_{\mathbb{X}} : \mathbb{X}' \boxtimes \mathbb{X} \to L$ in $\operatorname{Rep}(\mathbb{V})$.

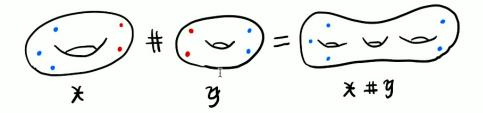
March 2025 8 / 1

Pirsa: 25030177

Towards sewing-factorization theorem

Hao Zhang

• Let $\mathfrak X$ be an (N+L)-pointed surface and $\mathfrak Y$ be an (L+K)-pointed surface. We can sew $\mathfrak X$ and $\mathfrak Y$ to get $\mathfrak X\#\mathfrak Y$, which is an (N+M)-pointed surface.



ullet Choose a $\mathbb{V}^{\otimes K}$ -module \mathbb{M} and canonical conformal block

$$\omega_{\mathfrak{Y}} \in CB(\overset{\square_{\mathfrak{Y}}(\mathbb{N})}{\bullet}), \quad \omega_{\mathfrak{Y}}: \square_{\mathfrak{Y}}(\mathbb{M}) \otimes \mathbb{M} \to \mathbb{C}$$

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 夕久(

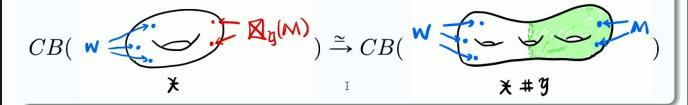
March 20

Pirsa: 25030177 Page 10/20

Sewing-factorization (SF) theorem

Theorem (SF theorem, Gui-Z. to appear)

'Sewing conformal blocks' $\psi \mapsto \psi \# \omega_{\mathfrak{Y}}$ gives an isomorphism



It's highly nontrivial that sewing conformal blocks is convergent and hence well-defined. This is proved in my joint paper (arXiv:2411.07707) with Gui. The convergence of pseudo q-traces (Miyamoto 04', Fiordalisi 16') corresponds to the convergence of sewing conformal blocks in this theorem.

Hao Zhang March 2025 10 / 19

Pirsa: 25030177 Page 11/20

SF theorem for coends

Recall that $\mathfrak{P}=$ and $\mathfrak{Q}=$.

- \bullet SF theorem implies that \boxtimes $_{\text{(i)}}(\mathbb{V})\simeq\boxtimes_{\mathfrak{P}}(\boxtimes_{\mathfrak{Q}}(\mathbb{V}))$
- Assume that $Rep(\mathbb{V})$ is rigid. We can prove that $\boxtimes_{\mathfrak{Q}}(\mathbb{V})$ is self-dual and

 \boxtimes $(\mathbb{V}) \simeq L$

• Write $\mathfrak{P}_N = \mathbb{R}_N$ so that $\mathfrak{P}_2 = \mathfrak{P}$. This gives a functor $\mathbb{K}_{\mathfrak{P}_N} : \operatorname{Rep}(\mathbb{V}^{\otimes N}) \to \operatorname{Rep}(\mathbb{V})$.

March 2025 11 / 19

Let $\mathfrak X$ be an N-pointed surface with genus g and associate a $\mathbb V^{\otimes N}$ -module $\mathbb W$ to the points of $\mathfrak X$.

Theorem (Gui-Z. to appear, motivated by Fuchs-Schweigert)

Assume that Rep(V) is rigid. We have an isomorphism

$$CB(\mathfrak{X}, \mathbb{W}) \simeq \operatorname{Hom}_{\mathbb{V}} \Big(L^{\boxtimes g} \boxtimes \big(\boxtimes_{\mathfrak{P}_{N}} (\mathbb{W}) \big), \mathbb{V} \Big).$$

Proof.

By SF theorem and propagation, $CB(\mathfrak{X}, \mathbb{W})$ is isomorphic to

$$CB()$$
 $\simeq CB() \simeq \operatorname{Hom}_{\mathbb{V}}(L^{\boxtimes g} \boxtimes (\boxtimes_{\mathfrak{P}_{N}} (\mathbb{W})), \mathbb{V}).$

Hao Zhang

Genus 1 CB and symmetric linear functionals

Recall the $\mathbb{V}^{\otimes 2}$ -module $\boxtimes_{\mathfrak{Q}} \mathbb{V}$ with left and right actions. They descend to a well-defined multiplication of $\boxtimes_{\mathfrak{Q}} \mathbb{V}$. This makes $\boxtimes_{\mathfrak{Q}} \mathbb{V}$ a non-unital associative algebra. From now on we omit the subscript \mathfrak{Q} of $\boxtimes_{\mathfrak{Q}} \mathbb{V}$. SLF means symmetric linear functionals.

Corollary (Gui-Z. to appear)

We have a canonical SF isomorphism

$$CB(\bigvee \longrightarrow CB(\boxtimes V)) \stackrel{\simeq}{\to} CB(\boxtimes V).$$

<ロ > < 回 > < 巨 > < 巨 > 、 巨 ・ つ Q o

13 / 19 harch 2025

Left $\boxtimes \mathbb{V}$ -modules and $\operatorname{Rep}(\mathbb{V})$

- Choose a \mathbb{V} -module \mathbb{M} . Recall that we have $\iota_{\mathbb{M}}: \mathbb{M} \otimes \mathbb{M}' \to \mathbb{D} \mathbb{V}$ given by the dinatural transformation. Its transpose gives a linear map $\mathbb{E} \mathbb{V} \to \mathbb{M} \otimes \mathbb{M}' \simeq \operatorname{End}^0(\mathbb{M})$, where $\operatorname{End}^0(\mathbb{M})$ is the algebra of "finite rank" linear operators of \mathbb{M} . One can show that this linear map is an algebra homomorphism. Thus, \mathbb{M} gives rise to a left $\mathbb{E} \mathbb{V}$ -module $\mathfrak{F}(\mathbb{M})$.
- One can show that if \mathbb{M} is a projective generator in $\operatorname{Rep}(\mathbb{V})$, then the homomorphism $\boxtimes \mathbb{V} \to \mathbb{M} \otimes \mathbb{M}' \simeq \operatorname{End}^0(\mathbb{M})$ is faithful. Therefore, we can use the algebraic structure on $\operatorname{End}^0(\mathbb{M})$ to give an explicit characterization of the algebraic structure on $\boxtimes \mathbb{V}$.

Hao Zhang March 2025 14

Pirsa: 25030177 Page 15/20

$\operatorname{Coh}_L(\boxtimes \mathbb{V}) \simeq \operatorname{Rep}(\mathbb{V})$

- Recall that we assume that \mathbb{M} is grading restricted. We can see $\mathfrak{F}(\mathbb{M})$ is a coherent left $\boxtimes \mathbb{V}$ -module in the sense of following.
- A left $\boxtimes \mathbb{V}$ -module is called **quasicoherent** if it is a quotient module of $\bigoplus_{i \in I} (\boxtimes \mathbb{V}) e_i$, where e_i are idempotents of $\boxtimes \mathbb{V}$. A quasicoherent left $\boxtimes \mathbb{V}$ -module is called **coherent** if it is finitely generated. The category of quasicoherent (resp. coherent) left $\boxtimes \mathbb{V}$ -modules is denoted as $\operatorname{QCoh}_L(\boxtimes \mathbb{V})$ (resp. $\operatorname{Coh}_L(\boxtimes \mathbb{V})$).

Theorem (Gui-Z. to appear)

 $\operatorname{Coh}_L(\boxtimes \mathbb{V})$ is closed under taking quotient and quasicoherent submodules. Moreover, the functor

 $\mathfrak{F}: \operatorname{Rep}(\mathbb{V}) \to \operatorname{Coh}_L(\boxtimes \mathbb{V}), \mathbb{M} \mapsto \mathfrak{F}(\mathbb{M})$ is an equivalence of abelian categories.

Hao Zhang March 2025 15 / 19

Pirsa: 25030177 Page 16/20

Towards pseudotraces

- Choose a projective generator $\mathbb{G} \in \operatorname{Rep}(\mathbb{V})$ and set $B := \operatorname{End}_{\boxtimes \mathbb{V},-}(\mathbb{G})^{op} = \operatorname{End}_{\mathbb{V}}(\mathbb{G})^{op}$, which is a finite dimensional unital associative algebra. One can show that \mathbb{G} is projective as a right B-module.
- Therefore, the pseudotrace construction gives us a linear map $SLF(B) \to SLF(\boxtimes \mathbb{V})$, and also a linear map $SLF(\boxtimes \mathbb{V}) \to SLF(B)$.

Theorem (Gui-Z. to appear)

The above linear maps $SLF(B) \to SLF(\boxtimes \mathbb{V})$ and $SLF(\boxtimes \mathbb{V}) \to SLF(B)$ defined by pseudotraces are inverse to each other.

Hao Zhang March 2025 16 / 1

Pirsa: 25030177 Page 17/20

Pseudotraces and genus 1 conformal blocks

When $\boxtimes \mathbb{V}$ is replaced by a finite dimensional unital algebra, the above theorem is due to Beliakova-Blanchet-Gainutdinov 18. We can show that it is still true for $\boxtimes \mathbb{V}$.

Theorem (Gui-Z. to appear. Conjectured by Gainutdinov-Runkel 16)

The combination of the SF isomorphism and the pseudotrace construction (for associative algebras) provides a linear isomorphism of the following spaces

$$CB(V - \mathbb{C}) \simeq SLF(\operatorname{End}_{\mathbb{V}}(\mathbb{G}))$$

defined by pseudotraces.

Hao Zhang March 2025 17 / 19

Pirsa: 25030177 Page 18/20

Pseudotraces and genus 1 conformal blocks

The previous theorem can be generalized. Using the trick of square zero extension by Fiordalisi and Huang, we can prove:

Theorem (Gui-Z. to appear)

Suppose that \mathbb{W} is a \mathbb{V} -module. The combination of the SF isomorphism and the pseudotrace construction (for associative algebras) provides a linear isomorphism of the following spaces

$$\simeq \{\varphi : \operatorname{Hom}_{\mathbb{V}}(\mathbb{G}, \mathbb{W} \boxtimes \mathbb{G}) \to \mathbb{C} | \varphi((1 \boxtimes y)T) = \varphi(Ty), \\ \forall y \in \operatorname{End}_{\mathbb{V}}(\mathbb{G}), \forall T \in \operatorname{Hom}_{\mathbb{V}}(\mathbb{G}, \mathbb{W} \boxtimes \mathbb{G}) \}.$$

Hao Zhang March 2025 18 / 19

Pirsa: 25030177 Page 19/20

Pirsa: 25030177 Page 20/20