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Abstract:
In this talk, | will describe how ideas from geometry and combinatorics can help us understand the mathematical and physical

properties of cosmological integrals. From efficiently deriving canonical differential equations to a systematic method for finding

a minimal basis for the physical subspace. Time permitting, | will also comment on how geometry and combinatorics control the
zeros of cosmological integrands.
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Introduction

e What are FRW wavefunction coefficients

e Introduce toy model of FRW cosmology

e How to compute FRW wavefunction coefficients?
e Twisted cohomology and an over counting problem

More twisted cohomology and intersection theory

e Relative twisted cohomology D cuts

e Cuts provide good organizing principles

Physical, degenerate and unphysical cuts

Diagrammatic algorithm

Discussion and outlook
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Cosmological correlators

Time-evolution /causality presents unique challenges for developing
quantum theories of cosmologies

It is not well understood how causal time evolution is reflected in the
boundary observables at infinity

Can causal time evolution and locality be emergent phenomena? [Nima]

[N. Arkani-Hamed, P. Benincasa, A. Postnikov (2017)] : for toy models of cosm0|0gy,
wavefunction coefficients are the canonical form of a positive geometry
called the cosmological polytope

Defined without reference to Feynman rules (with causality + locality
backed in)
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The toy model

Conformally-coupled scalar field in a power-law FRW cosmology with
non-conformal polynomial interactions in (d + 1)-dimensional spacetime

17 AP H T 1( mMAanyv more
1 1/, AR&riiman 1Y, — many maore

st = [ atwan | 3007 - 3 2t

k>3

ds® = gy, dztda” = a?(n) [—dn® + dz;dz’]

(¢ =0 (dS)
e=—1 (flat)

Me(n) = Ae [a(m)) @7F T

s 771+E
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Feynman representation

kil

m=n;_1+1 m=n;_1+1

X+ 2Xo-F X3+ Y1+ ¥
(X1 X2+ X3)(X14+Y1) (Y1+X2+Y2) (Yo +X35) (X1 +X2+Y2) (Y1+ X2 + X3)
B 2(X1 + X2+ Y1 4+ Y2)
(X1 X2) (X1 4+ Y+ Y2)(Xe 4+ Y1 4+ Vo) (X1 + Xo +2Y71) (X1 + X2 + 2Y2)

Energy is not conserved
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Positive geometry and cosmological polytopes

X1+ ¥y — X2 S ,_.x:{"ryb—xl
Flat space wavefunction coefficients are |
X X2 — Ya

the canonical forms of the positive ge-
ometries called cosmological polytopes

X1+ Yo — X2 ! i ' X2+ Yo — X1

W - 1= : Ol
AvlranicHameaed 2 AaRnINncaca PAactnileayy Eanimann -
Arkani-riamed, benincasa, rostnikov, baumann, ri-

many more

X1 +X2—¥s

d"X A dnmltty
GL(1)

= (4"7'Y1 -+ Yoqe1) x QP

(£)
wn,ﬂat

S’Zg) defined without ever referencing “Feynman rules”

Universal integrand from a purely combinatoric-geometric origin
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What is a canonical form?

Unique differential form associated to a bounded region with logarithmic
singularities on all of its boundaries

Ir—a

F) = dlog —
o

So
— dle —/\dlo —
g gSS

= dlog /\dlog 52 ?
4

Adl
GRAE

Resg, [Q[’y]] = [asﬂ}

Pirsa: 25030174 Page 9/35



Pirsa: 25030174

Cosmological canonical form from combinatorics of tubes

Energy factors (propagators)

Si=8,=> X+ > Y.

vEVr, e€r,;

Z 1 d"X A dnitty

Q) =
[l;er - GL(1)

complete tubings T’

3-site example:

il 1 1
W@, + €D, “5m (5w
3 % ;+ 1 S1- 5 S5+S6
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FRW correlators (¢ # —1) from flat space correlators
4
e
—> replace 5;(X,Y) = B;(x,X,Y) = S;(x+ X,Y)

flat space correlators: integrate over shifted energies X — x + X

u = (z1---2n)° universal m.v. fn. (twist)

& (XY ~ o OO (x +X,Y) d"
Y rrW (X, Y) . u Qp7(x+X,Y) d"x
|

s.v. diff. form ppys

Too hard to directly integrate. Next best: canonical DEQ

dx,yv)P=€A ANp  Yphys € Span{p,}
!

goal

= / Upe = bdg + € /Aabbdb + &2 /Aab/Abcbdc + O(e®)
0
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Twisted cohomology

1 w Mactralin Erallacitio (Faveme o~ AD e moimrl Crialaresr s v ]
11ZE€ Viastrolia, rrellesvig, Caron-HAuort, Al vveinzierl, oStieperger — many more

u = (x1-+-2,)° universal m.v. fn. (twist)

P (X, Y) = [ i T
|

twisted cohomology class € H™ (M \ B; V)

x€M=C"\ V(z;-- z,)
B— V(By: By

-closed n-f: : =t
HL(M\ B V) = V-closed n-forms: {p|Vy = 0}

V-exact (n — 1)-forms: {V}
V =d+edlog(zy - x,)A

# of masters: dimH x(M \ B; V) = |[x(M \ B)|
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Severe overcounting

L 16

Kinematic flow: choice of a 4 !-dimensional basis whose differential

equatlon CIOSGS [Arkani-Hamed, Baumann, Hillman, Joyce, Lee, Pimentel '24; He, Jiang,

Elements of the DEQ predicted by emperical graphical rules

How do we define the physical sector invariantly? Why does this exist?

Goal: explain mechanism for splitting between physical and unphysical
subspaces and how to find a basis for the physical subspace
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What is relative twisted cohomology?

Dualize: turn untwisted singular surfaces B into boundaries [AP, Caron-Huot]

H" := H"(M,B; V) @ @ 55 (H™P(M5V)) ,
p=0 J:|J|=p

|

Sum over each boundary/cut cohomology

Boundaries = cut surfaces: M ; = M N B; where By = N;e;V(B;)

How to represent dual forms?

Hn?'ﬁﬁzz 57 (¢5) with ¢y € H" P(M;;V)
|

85 < Og: (65(d)|w) = (d|Ress[¢]) s

Ao () = (=1 (5_;(d¢3) +3 5h-(¢3|1-)), Tt =0
igJ
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Intuitive explanation of intersection theory

d inner product on space of twisted differential forms
compactification step - skip

dual forms ¢ € H" seeds for residue operators

FRW forms dual FRW forms

mild twisted poles V(xy---x,) mild twisted poles V(xy---xy,)
dangerous un-twisted poles V(Sy---Sy,) boundaries V(57 --Sp)
~ Feynman integrals ~ cuts of Feynman integrals

. 1 2 2
Cuts: 332——7712 — 5(p —m )
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Relative twisted cohomology and positive geometry

canonical form on cut/boundary M ;

_— ! x(M )|
Dual basis: {cpa}lx Bl _ {5J( gk )}
. b=

Q.],l’.:lJ = QJ,R:

. RN
FRW basis: {goa}b‘(i Bl U{dlogJA QJk }

J k=1

dlog; := /\ dlog B;
jeJ

dimH™(M\ B;V) = [x(M\ B)| =Y |x(M,)| = dimH™(M,B; V)
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Duality of bases

For FRW dlog-forms, the intersection number simplifies to

. Res,»_o|d
(6.7(P)|p) = Z En'}ﬂ[qﬂ Res. —o[ Res; [¢]]

z”}EIntJ ~ -~ ~ l
’Lf"z*} generalized unitary cuts

Easy to check that the intersection matrix is block diagonal on cuts

(67 (Qr)|dlog s A Q) = 67r0(Qs k) s

Physical cuts have a 1-dimensional cohomology <= physical sector of
intersection matrix is diagonal
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Compact formula for DEQ

Compact formula for DEQ

dxyvip=ANp
Ay = C’b}l@bf\[d(x,Y) ©al)
Cab = <@a|§9b>

Reduces to residue calculation

~

. Res,« —
6@y = Y e ofRes,ldoc.yeal

z%elnt,
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Cut structure of DEQs

d(x, v)¥Pa =~ € Dlog(xy - - x,) A Dlog; A (QJ,k|dlog—>Dlog)
XA s D

D=d+dxy  ¢o=dlog;AQy

d(x,y) cannot introduce new singularities on untwisted singular loci B
= ResKgoa —r— ReSK[d(ij)tpa} =0

Recalling

. Res.~—o[¢
6 @dorrpad = 5 e o [Res, Ao vyl

z% Elnty

—> phys Only couples to basis forms that share cuts
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Answer seems to be: divide cuts into physical cuts (Ress|1/phys| # 0)
and unphysical (Res [tphys] = 0) cuts

ghys — U {d log'] A QJ}
J:Res 7 [Yphys]|#0
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One more complication

Cosmological polytope <= arrangement of un-twisted hyperplanes B;
is degenerate

Linear relations among the B;:

G

_|_
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Degenerate cuts

all correspond to the same cut
space

Residues do not necessarily anti-commute: Res:g;[¢phys] = 0 but
Res;56[%pnys| 7 0 for i = 2,4

Satisfy additional linear relations

Res = Res

Detected by intersection matrix: (6;(Q;,)|dlog . AQx ;) does not have
full rank

Orlik-Solomon algebra: after picking residue ordering (big to small),
generates all residue relations
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The pedestrian way forward

The intersection matrix is not full rank rank(C") = 25 = x(M \ B)

Drop d256 and dlog,se to get basis: @' = (@ \ {d256}) and
@' = (¢ \ {dlogys6})
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Physical sector N degenerate boundaries

Want to decompose into a physical and unphysical

sectors by constructing a gauge transformation ¢ = U - ¢’

For the 3-site example:
v = (Resas2[Yphys|, Resag2[Uphys], Ressez[tpnys|) = (1,—1,0)

(]118><18

118%18

Vix3

(NU”[VDQXQ,

Taxa

Pirsa: 25030174 Page 24/35



Pirsa: 25030174

Apply gauge transformation to FRW forms: ¢” = U - ¢’ with
U= (U- Q’)_lT sothat C" =1

The DEQ for "'

3-bds

] degen 3-bds

Physical subspace has been isolated: d(x,y)goghys = Span{ﬁpghys}

Couting the physical rows one finds that dimH; (M \ B; V) = 16
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4-site chain: «—+—+——

x(M \ B) = 213 but
dim ;Lhys =GAr— 44_1 o 11—cut =l 92-::uts A 27?;—r:uts Eh 27ll—t:uts

} (14+9) 1- and 2-bds

94 3-bds I ’:

! 3 degen 3-bds

] 21 4-bds
27
6 degen 4-bds
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Graphical rules for physical cuts (at / = 0)

1) No crossed tubes:

2) All vertices must be encircled at least once
(for non-trivial cohomology)

3) (k > 1)-residue-tubes must contain one free vertex
(for non-trivial cohomology)

4) A cut is degenerate if 3 out of the 4 factors in a linear relation appear
as cut tubes

5) Each block of degenerate cuts counts once
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Graphical rules for physical cuts
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Graphical rules for physical cuts
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Graphical rules for physical cuts
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From physical cuts to forms

=0 2 dlogg s Ad log LN dlog =
0EZE . 3 To T

4

Z T
2 /\dlog—3
15

4

/

OgL.} ) } — d10g5,10 /\d ].Og
En

X3

) = dlogg /\dlogE /\dlogm—2 A dlog =
xI9 I3 Iy
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From degenerate cuts to physical forms

Degenerate block of the 4-site chain generated by the linear relations

This block of 4-cuts has 3 that are non-crossing

T 5
— -‘-‘h
Lesss T e
_— .~ 9

T, \2

N o=

- -
- —
-~ = = —

Combine such that there is a relative sign between tubes that cross

d 10g5,9,6,2 =d 10:%"5,9,7,2 +d 10&5,10,7,2

B
= dlog Bs A dlog 3—6 A dlog By A dlog Bs + dlogs 1975
7

B
= dlogs g .0 +dlog Bs A dlog ﬁ A dlog B A dlog B,
9
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1-cuts 2-cuts 3-cuts 4-cuts b-cuts 6-cuts
g 3 33 3 32

=10 l1-cuts 2-cuts 3-cuts 4-cuts
n = 2 (bubble) 3 7
n = 3 (triangle) 4 21 25
n =4 (box) 5 42 100 79

Independent of topology and agrees with [A
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Discussion and outlook

Relative twisted cohomology is a good mathematical framework for
understanding FRW integrals: organizes space by cuts

Generalizes straightforwardly to loop-level time integrals

The physical cuts factor into flat space amplitudes (at tree level)

Interesting combinatorial formula for the counting of basis elements that
agrees with empirical observations
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Discussion and outlook

Relative twisted cohomology can be used to construct a coaction on
these integrals [WIP with L. Ren and A. McLeod]

e connection to number theory

e insight into the kind of functions that can appear

Insights into the zeros of FRW integrals

AMID with © DNa ¢ DParaataes R Copadites A Ao foca
WIP with S. De, S. Paranjape, M. Spradlin, A. Volovich|

Predict zeros from
e limits of certain graph associahedra

e the factorizations of the adjoint polynomial
(numerator of a canonical form with geometric interpretation)

Pirsa: 25030174 Page 35/35



