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Abstract:
The measurement of the electron magnetic moment (g-2) e has reached the spectacular precision of sub-parts-per-trillion, and
is currently the highest-precision measurement of a property of a fundamental particle. The next iteration of the measurement is
expected to improve the precision by almost an order of magnitude, at which point the leading systematic uncertainty will be
the “cavity shift”: the modification of the electron energy levels due to the conducting walls of the cavity in which the electron is
trapped. This quantity cannot be directly measured at the required precision, and must be calculated. | will review the setup of
the (g-2) e experiment and present a new calculation of the cavity shift using the full machinery of quantum mechanics and

quantum electrodynamics, which improves upon previous classical calculations with a consistent renormalization scheme while
allowing for individual quality factors for each cavity mode.
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The frontiers of precision measurement

Measurements of QED constants over time
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Most precise theory/experiment comparison humanity has ever made!
How do we do even better?

Yoni Kahn
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Measuring the g-factor

An single electron in a B-field is its own magnetometer
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[X. Fan, Ph.D. thesis 2022; Fan, Myers, Sukra, Gabrielse, PRL 2023]
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Cavity inhibits spontaneous emission

25
N
=. 20
£
% 15
: . 3
But if no cavity S 10
BN - =
Sy 9 mode at @, g s
electron g
W= W, : ' x =g 3
can't radiate! 5

for Q ~ 3000, can increase cyclotron state

2
(else!gtﬁgcc’itirggle) Fffee - daw; (0.1s)7! lifetime to >5s, crucial for precision
3 m
radiation torB=E3T
Yoni Kahn

[X. Fan, Ph.D. thesis 2022]
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The (real part of the) cavity shift

- With a change in the lifetime (imaginary part) unavoidably comes
a change in the cyclotron frequency (real part)
Classical E+M: image charge also
radiates, perturbs trapped electron orbit

b S P e G Be ’ ''''' = ch ~ a -~ 10—13 x 1cm
We 4dma a

But this estimate is multiplied by a divergent sum:
no robust way to deal with electron self-energy in classical E+M!

Leading systematic uncertainty for next iteration of the experiment

Yoni Kahn [Boulware, Brown, Lee, PRD 1985: Brown, Gabrielse, Helmerson, Tan, PRA 1985] 4

Pirsa: 25030168 Page 6/25



Cavity shift in guantum mechanics

For now, forget the electric field and consider only a constant B-field with vector potential A,

€
(E+6E)Y = [% (p + €A, +eAq)2] N — §H = E (A-q . ﬂ.) creates or destroys

exactly 1 photon
N— —
P A

unperturbed Hamiltonian  quantized matrix element between 0- and 1-photon states

(Landau levels) photon field /
Second-order SE Z Z Z [(N;0|0H|N"; 155) |2
perturbation N =
T o123 En ENf + Wy )—l—ze

mode electron electron, photon
numbers states energies

polarizations

Yoni Kahn

Pirsa: 25030168 Page 7/25



The Lamb shift

(N3 0|6 H|N'; 15,) |2
OBN = y TT ENf+wSJ)+ze

o=1,2 s

In an atom with a Coulomb potential, this is called the Lamb shift. Famously, it diverges:

9
5By, ~ —O‘ T dk = o
3T

Relativistic effects are important, so matching this low-energy calculation with a relativistic
quantum electrodynamics calculation at energies close to the electron mass to get a finite
answer is crucial. (Even Feynman and Schwinger got the matching wrong!)
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Cavity shift as an IR Lamb shift

Fortunately, the cavity shift is explicitly a low-energy (infrared) effect.
When we take the box away, the shift must vanish: this is our renormalization condition

5Ecav — Z Z Z | noi 0|(5H|7’I, l,q, 10 mup>|2

o=TE, TM mupn’l’'q’ '-"l 'q’ il wa,mpp) =Flie
cavity modes Both will diverge (linearly and

logarithmically), but their

/ difference must be finite:

dSk nOl 0|(5‘FI|’HJ"F'{.Ijr i 1Ak>|2
free 29
5EN Z/ Z/ q, Eop — (En’q’z i k) T e ch = (5Efav 5Efree) (5Ecav 5Efree)

f“"f

plane waves
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Warm-up: spherical cavity
Classic Jackson problem: Green'’s function for a spherical cavity has a closed form by

method of images

R
B V/r2(r')2 — 2R?r - v/ + R*

2a0w? (1 —2%)cosz+ zsinz 3
* Aw, = ——=< ( 2). v ol
3 m \(1-22)sinz—2cosz 2z

2 =it

Can easily compare quantum calculation to this classical calculation,
which does not use a mode sum and thus doesn’t require renormalization

[Brown, Helmerson, Tan, PRA 1986]
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Electron eigenstates

Spherical boundary means we need to consider quadrupole confinement of electron

Three harmonic oscillators:
magnetron motion b’
= / < H=u aTa+1 +w, |ala +1 — bTbJr1
___________ { & 2 z T 2 m 2
metastable (1000 yr lifetime)
w' ~ w. ~ 100 GHz, w, ~ 100 MHz, W, ~ 50 kHz

C

=" axial motion @) B2 (b1 (a1)9 1
(. adal mton a] _ (@) () (a) am
cyclotron motion a [nlg) vn! VI V4! 02, Enig n 2 =<

With this (standard) hierarchy of frequencies, w,, <K @, we have

mw . [mw . [mw
My N 2c(a+a1), T Qc(a—aT), Ty = —i QZ(aZ—ai)

Yoni Kahn [Brown and Gabrielse, Rev. Mod. Phys. 1986]
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Photon eigenstates

Spherical cavity: Free space:
Bk 1 .
A,(x) = —_— ex(k)e?™*ay, + h.c.
Q( ) (271_)3 \/2—’{: )\;2 [ /\( ) Ak ]
e+(k) = % [(cos O, cos ¢ F isin ¢y )X + (cos O sin @y, £ i cos @)y — sin Oz

A, (x)= Z - [Uso (X)ass + h.c.]

V 2wsa

s,0

1 A - im ~ d "
N ) . R ime | m m
UTE,mnp = Crmng e In(WTE npT)e ! = an (cos 6)6 + 20 P (cos 0)¢

e (z) = zjn(x)

Yoni Kahn [Pictures from Pascale et al., Nature Sci. Rept. 2019] 10
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One-photon matrix elements: sphere

For sufficiently strong B-field, electron is confined at the center, can use dipole approximation:

1
{ = ~ 10 nm
'61‘11\1{2 VeB Two subsets of modes survive:
PR 2 i

urM,11p(0) = gcup (X +1i9) (transverse)
nén’,n— ) m=+1
<’RZQ|UTM,m1p . 1'l'|’n,’lfql) — __cllp V 2eB dy 0 qq’ X {\/fménin_;_l, m=—1,

2 (TM) 4 . .
uTMm, 01p(0) = 3001p Z (longitudinal)

Wz
(nlglurm,o1p - w[n'U'q") ~ fl== X (nlglurm,i1p - wn'l'q’)
C

longitudinal squared matrix element suppressed by ~ 1073, will neglect from now on

Yoni Kahn [Pictures from Pascale et al., Nature Sci. Rept. 2019]
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Un-renormalized cavity shift: sphere

9 Pmax (. (TM)y2 unlike in Lamb shift,
SEC: — _ e’ 8eB Z (Cllp ) i g n+1 only transitions between
" 2m?2 9 =0 WTM,np \WTM,np — We WTM,np + We neighbouring states

cav. — cav. cav. 8a wc ey (Cip)s 1 1
=P AT SO OB S TR 24 (G, F 2 72,(G,) (G P 2
p=0 1p 3/2 1p 1p c

(1p* p-th zero of d%:[:vjl(m)] x zcosz + (22 — 1)sinz

For large p, asymptotic behavior of Bessel functions and zeros gives

4o w
A ™ — > max
W 3 me

Linear divergence with radial mode number cutoff, as expected

Yoni Kahn 12
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(nlglex (k)

Matching and renormalizing: sphere

One-photon matrix elements in free space:

2

B v : :
-wn'l'q") =4/ 62 (nlg|e%(a + a') +ie¥.(a — a)|n'l'q) = LBau,aqq, (\/n + 1e%* (cos O, F 1)8,r 1 + Ve % (cos O, + l)én,,n_l)

eB
_’ > " lnlglex(k) - wln/l'q)|* = (l-l—cos 0)(n 4 1)8n i1 + nbpr 1)

P ( A wfree

C

Yoni Kahn
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Sum over mode numbers becomes integral over continuous wavenumber:

20 els et 1 1
A free _ Efree _ Efree mew -/
wiree = §Efree _ GE e AL G e

Principal part gives the real part of the frequency shift:

Spherical TM modes (n = 1)

(ip ~ PT = wrm,1p ~ P/R
do kma.x We kmax — We : B
)=- (— + 5 log (—kmax n wc)) match by choosing

-05

kmax - 71-pmax/fi
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Comparison to classical calculation: sphere

0 Classical vs. quantum cavity shifts, spherical cavity - Cla&s;call If We add a Constant Shift by hand o
e s e e Classical vs. quantum cavity shifts, spherical cavity
o 1.10 —
3 5 1051 Fmax =
< =
= 0 5] 1
5 £ 0.95]
~10 : : : : : 0005 5 10 15 20 25 30
0 5 10 15 20 25 30 e
Perfect agreement! This suggests a bizarre formula:
Pmax ! \3 2 i
) 2 TPmax — 2 4 (¢1p) 1 1 z(1 — 2)?cosz + 2%sinz 3
lim [2pmax+1+ —log (—) - — = _ +
Prmax—>00 l ok T TPmax + 2 T ;,Z:; (G =2 J32/2(C{p) (Cip)—2= (1-2)2sinz — zcosz 222
Where the heck does this come from?? Why the +17 Which calculation is right?
Yoni Kahn 14
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(nlglex (k)

Matching and renormalizing: sphere

One-photon matrix elements in free space:

2

B v : :
-w[n'l'g") =4/ 62 (nlg|e% (a + a') +ie¥.(a — al)|n'V'q) = LBau,aqq, (\/n + 1e%* (cos O, F 1), ny1 + Ve % (cos O, + l)én,,nél)

eB
_’ > " lnlglex(k) - mwln/l'q)|* = (l-l—cos 0k)(n 4 1)8n ms1 + 16pr 1)

P ( A wfree

C

Yoni Kahn
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Sum over mode numbers becomes integral over continuous wavenumber:

20 eB  [Fmax 1 1
A free _ Efree _ Efree =a -/
wiree = §Efree _ GE woz ) e i

Principal part gives the real part of the frequency shift:

Spherical TM modes (n = 1)

(1p ~ pT => wrm1p ~ PT/R
4o kma.x We kmax — We : )
)=- (— + 5 log (—kmax m wc)) match by choosing

-05

kmax — 7rpma}:(/fg
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Challenges with a cylindrical cavity

No exact classical calculation possible. The best one can do:

e g >
L A a — 00 + L — 00
g e QD

a
But this misses effects of order L/al
Need to do a renormalized mode sum calculation;
“boundary-only” calculation doesn't allow for individual Q factors for each mode

Yoni Kahn [Brown, Gabrielse, Helmerson, Tan, PRA 1985] s
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One-photon matrix elements: cylinder

Dipole approximation in radial direction:

a~ 4.5 mm 1 0 Uss (x) ~ Ugo (p = 0) piCkS out TE/TMlﬂp
— ~ nm
VeB

\/_Jn ,n—1 m=+1

(nlglum u2p 41 - wn'l'q") = Uy, 2p+1( )V2eB bur 8yq {W&a n+1 m=-—1

Same matrix element structure as for spherical cavity,
! j but this time, 2 free mode indices and
) both TE and TM modes contribute

Yoni Kahn 16
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Un-renormalized cavity shift: cylinder

Hmax 00O
AW — 87ra§ y‘ y‘ y‘ (uffﬂ 2p’ -I-I(O))

c 2 . 2
m o=TE, TM p=1 p’=0 or J2p’+1 — We
radial  longitudinal
index index
/ 1 [ T D
UTE I p 2 UTM,,u,,p(O) = 2,3
271'0. L \/JQ(XI}.L Jz(Xl,u. J2 Xlu)\/X1u2 % p271-2a2
roots of J!(z) roots of Ji(z)

Longitudinal sum can be performed analytically (Poisson summation):

(£ /00,07~ @) /i, (o tanh (/i — @) = e tan (%)
(F201) = B30, (Xh)? = (awe)? (awe)?JZ (X1)

Not obvious, but this is also linearly divergent

Yoni Kahn 17
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Matching and renormalizing: cylinder

Redo the free-space calculation but in cylindrical coordinates:

B kTa.x oo k2 1
A ffee=—ie—f dk f dk, |k, (1 2
We 2 m2 J, . o b k2 +k2) \ k2 + k2 —w?

As in the cavity, can do the longitudinal (kz) integral analytically. Principal part gives

kmax kma.x 2 2
freey Q@ €B]m = 2| 1 ki (kf —2w7) _ BaeBivay 1

2 ,,2
2 m?2 | w? -aN ki — w?

Coefficient of linear divergence matches mode sum divergence. But how to match cutoffs?

1 p 1
X1p ™~ N"‘Z T, Xip ™ M_Z m

Finite parts really matter here!

Yoni Kahn
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Next steps: check w/relativistic QED

Exploit the fact that the relativistic Landau level problem has exact solutions:
SEN = /dgx d3yﬁN(x)EA(x,y; En)un(y) — 4-component Dirac spinors

Uy (X)uiZ (v)
w? — w2 +ie

Coulomb-gauge photon propagator in cavity: D% (x, y; w) = i Z
fﬁ'm"’b‘,_/\‘\
ZA(X, Y, EN) = { 'i = _82 / d(t - t’)eiEN‘(cit,)f}l”S(xs iy, t!)’}’uD”y(X, iy, t’)

Exact propagator for electron in a constant B-field (Schwinger):

sSo

‘ d*k > dr tan(eBT) { § K,
= 8(X,Y) |~ 7 —ik(X-Y) e i 2 _ 2 —m2 4+ (K + m)[cos(eBT) + v v*sin(eBT1)] +
S(X,Y)=¢e ) e /(; cos(eB7) exp [z’r (k” k7 Y m* + ze)] I [ ] ooa(eBT)
Yoni Kahn [Schwinger, PRL 1951; Kuznetsov and Mikheev, Springer 2013]
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Next steps: check w/Lorentz-
iInvariant boundary propagator

Can isolate the boundary-only part of the photon propagator by inserting delta functions:

Z = f DAS(n” Fyylbary) exp [z / d‘*xﬁ[A]] ~ / DADBexp [z ( f d*z L[A] + f deﬁ[A,B])]

ngﬁ#ggp 2 additive correction to
iti 4 action on surface
conditions

ﬁ D“V(X, X’) — thf;ee)(X — X’) +5Llldry)(X’ X’)

Technical complications: cylinder has sharp edges, QED in curved space is tricky...
probably most useful for comparing with classical calculation in spherical cavity

Yoni Kahn [Bordag, Robaschik, Wieczorek, Ann. Phys. 1985]
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Next steps: Q-factors and
systematic uncertainty

[(N;O0[0H|N"; 155)|?
En = .
5 N 0_>1 2>s > ~ EN EN" = wso)"'zrso

UV divergences independent of finite Q-factors for low-lying cavity modes:
classical calculation requires assuming uniform Q-factor for all TE and TM modes

20

12 o reproduce this plot using renormalized
T s quantum calculation, check systematic
ES uncertainty as number of included
°F modes is varied

15 —

20 g B0 100 NI T

cyclotron frequency (GHz)
Yoni Kahn [X. Fan, Ph.D. thesis 2022]
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Conclusion and perspectives

Lamb Schwinger

Shelter Island conference, 1947

Bethe’s notes

 Nije | ,
Lam _ o Shodier lofunpl CMM
M5 b rrite 0.008 et I oS bt

8 The first use of the renormalization concept was in a non-
relativistic calculation of the Lamb shift by Bethe (1947).
Schwinger was the first to treat the problem of the Lamb shift
and the electron anomaly using a relativistic formulation. The

theory of QED was also developed independently by Tomonaga
(1946) and Feynman (1948).

From the Lamb shift to g-2 and back again: pushing QED to its ultimate quantum limits

Yoni Kahn
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[Rich and Wesley, 1972]
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