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Abstract:

In this talk | will discuss the energy probability density function of an evaporating near-extremal charged black hole. At
sufficiently low energies, such black holes experience large quantum metric fluctuations in the $AdS {2}$ throat which are
governed by a Schwarzian action. These fluctuations modify Hawking evaporation rates, and therefore also affect how the black
hole state evolves over time. In previous work on Schwarzian-corrected Hawking radiation, the black hole was taken to be in the
microcanonical or canonical ensemble [arXiv:2411.03447]. However, we find that an initially fixed-energy or fixed-temperature
state does not remain so in the regime where Schwarzian corrections are important. We consider three decay channels: the
emission of massless scalars, photons, and entangled pairs of photons in angular momentum singlet states. In each of the three
cases, we find that in the very low energy, quantum dominated regime, the probability distribution of the black hole energy level
occupation tends toward a particular attractor function that effectively depends on only one combination of time and energy.
This function is independent of the initial state and gives new predictions for the energy fluxes and Hawking emission spectra of
near-extremal charged black holes.
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The semiclassical treatment of black hole thermodynamics breaks down in the extremal
limit.?
This is because the near-horizon metric has soft modes whose action becomes

unsuppressed at low temperatures.

For a RN black hole, quantum metric fluctuations begin to modify the semiclassical
description at the scale (E = M — Q)

™

Ebreakdown = —F=
r+50

Today: how these quantum gravity effects correct observables of near-extremal charged
black holes in 4d flat space

1Pre5ki|l et al. 1991; Maldacena, Michelson, and Strominger 1999.
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Qutline

Review: Quantum gravity corrected (microcanonical) emission rates

1. Breakdown of semiclassical treatment for near-extremal charged BH — the role of
JT gravity

2. Low-energy effective theory for BH scattering

3. Example: the quantum gravity corrected (microcanonical) emission rate of neutral
massless scalar particles

These quantum metric fluctuations modify how the black hole evolves over time.

Quantum gravity corrected time evolution of the black hole state
1. What is the probability density function of black hole energy, under...

1.1 scalar emission?
1.2 photon emission?
1.3 di-photon emission?

2. How does this change the Hawking emission spectra?
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A puzzle from the 90s

This story was reviewed by A.W. in their talk this morning.

The semiclassical analysis of RN black holes breaks down at sufficiently low energies. We
can see this by thinking about Hawking radiation.

Letting E = M — Q, the energy temperature relation for E < 1 is
E~QTH E<x1

The energy of a typical Hawking quanta is ~ Ty. When Ty ~ E, the emission of one
quanta changes the temperature by a substantial amount. This occurs at

Epre ~ 1/Q3 ~ 1/(r:So).

This breakdown is due to modes of the metric exhibiting large quantum variance at low
energies. They must be treated quantum mechanically.

Within the last decade, it was understood how to do so in JT gravity.
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Resolution in JT gravity

As the black hole approaches
extremality, the near-horizon region
develops a throat-like spatial geometry
with the approximate metric AdS, x S2.

Performing a dimensional reduction to
AdS; in the throat produces a theory of 2d
gravity coupled to matter (JT gravity).

The only dynamics occur on the
boundary. The boundary action evaluates
to a Schwarzian time derivative.
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Resolution in JT gravity

The gravitational path integral over this Schwarzian action can be performed exactly
— used to calculate the modified BH thermodynamics & density of states below Ep 2.

For JT + matter, correlation functions of matter operators dual to AdS; fields have also
been computed exactly.’

As we will now explain, from these correlators we can extract Schwarzian corrections to
observables such as the 4d absorption cross section and Hawking emission rates.*

2Iliesiu and Turiaci 2021; Ghosh, Maxfield, and Turiaci 2020; lliesiu, Murthy, and Turiaci 2022; Kapec et al. 2024; Rakic, Rangamani, and Turiaci
2024; Kolanowski et al. 2024; Moitra et al. 2019; Modak, Singh, and Panda 2025; Boruch et al. 2022; Heydeman et al. 2022.

3Mertens, Turiaci, and Verlinde 2017; Mertens 2018; Lam et al. 2018; Blommaert, Mertens, and Verschelde 2018; lliesiu, Pufu, et al. 2019; Kitaev
and Suh 2019; Yang 2019; Suh 2020. k

4Brown et al. 2024; Maulik, Meng, and Pando Zayas 2025; Emparan 2025; Bai and Korwar 2023.
6/41
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Low energy effective theory

For illustration: neutral, massless scalar field coupled to a near-extremal RN black hole.

The idea: low-energy (ryw < 1) interactions of the BH with the probe scalar are
captured by an effective theory which replaces the BH by a quantum system living at a
point in Minkowski spacetime.

The coupling between ¢ and the BH is described by

Hine = g0(t)¢(t,0) riw <1 ¢

O is an operator living on the point particle /—\

o

worldline which acts on the BH Hilbert space. In
the language of AdS/CFT, it is the A = 1 primary
operator dual to the massless scalar in AdSs.
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Low energy effective theory

Hiot is weakly coupled. One way to see thisis [O] =1 and [¢] =1, so [g] = —1.

Another way: ¢ feels a potential barrier V/(r) separating the AdS; region from the
asymptotically flat region. Transmission probability | T|? oc (ryw)? is small at low
frequencies. (See next slide)

(OO) has been computed in JT gravity including the gravitational path integral over the
Schwarzian mode. Once we have expressed an observable in terms of (OO), those
previous results immediately tell us how it is modified by the Schwarzian, simply by
expanding (OO) at low energies £ < Epy.

We determine g by a matching computation (to, e.g. the emission rate or absorption
cross section). In this case, g = 2r;..
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Low energy effective theory

) Asymptotically flat region
AdSs region
—

P
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Example: spontaneous emission rate of scalars

H = HeH ® Hmatter- |I} = |¥i,0) and |f) = |1)r, §), where G is the 3-momentum of the
emitted particle and |1); ¢) are the initial and final states of the black hole. The amplitude
for transition from |/) to |f) is

dt (We|O(t) ;) el

s
V !q

The total emission probablllty is

dt e “t(0(t)0(0))

where we relabelled |c_7'| — w. The number of particles emitted per unit time is

dw w jwt
¢ [ soa | deH0mo0)

L3

The meaning of () depends on the initial state of the black hole.
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Schwarzian corrections

We expressed the emission rate in terms of (OO). In the semiclassical regime, this is a
conformal two point function.

The calculation of (OO) at energies E < E, involves integrating over the Schwarzian

mode in the JT gravity partition function. For a black hole with J = 0 and fixed charge
@, the microcanonical result is

/ dte=“* (E|O(£)O(0)|E) = 27p(E — )| O £ o2

. 1 So : -1
p(E) = 271'25brke sinh(2m4/2E, , E)O(E)

e~ (A +iy/2E LE1 +i 2Eb—r§52)

(2B, )?AT(2)

|OEl,Ez|2 =
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Schwarzian corrections

The Schwarzian-corrected scalar emission rate is then
dN 2r2  [o©
P =5 [ dwwp(E - w)|Op 6-uf?

In particular, stripping off the integral over final states, the microcanonical transition rate
from a state |E) to |E —w) is

2ry 2
’}/(E, E —W) — TW|OE,E_Q_;|

Semiclassical result:
dN

E . X ri (EEbrk)3/2 E > E
Quantum result:

ﬂ

o r2 v/ Eon E>? o r2 (EEun)®*(E/ Euri) E < Epn
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Energy probability distribution

We have just calculated the scalar emission rate from a fixed energy state, i.e.

P(E,t =0) = 6(E — Ep)

where P(E, t) is the differential probability of energy level occupation at energy E and
time t. These and other microcanonical rates were computed previously.>

Q: How does P(E, t) evolve over time, as the BH undergoes Schwarzian-corrected
Hawking radiation?

To answer this question, we need to solve

E o0
T = [ e En(E EVP(E ) + [ dE o EN(E" EYPE"

3
5Brown et al. 2024.
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Energy probability distribution

In the semiclassical limit E > Ep and w < E, the equation is solved by a
time-dependent thermal state,

Pu(E, £) = Z(B(t)) " p(E)e PO

and £E) is the usual semiclassical expression for the total energy flux,

:
d(E) N, foo dwa(w,E)
7m 0

dt o e _ 1

P (E, t) stops being a solution at energies E < Epk. To study the solution below Ep,
let us continue with the example of scalar emission.

In the low energy limit E < Ep, the operator matrix elements become constant, and the

transition rate can be approximated as
1

_Egrkr—%-e_so(E - E,) S E < Ebrk
‘0

scalar emission v(E, E’) -

Pirsa: 25030165 Page 15/40



P(E, t) solution - scalar emission

Now we have

RS fE dE'VE(E — E')P(E, t) + /Oo dE"VE"(E" — EYP(E", t)

C1 dt 0 E

_ V2Epr?

h =
whnere C1 ﬂ-2
This can be solved analytically. Subject to the initial condition
P(E,t =0) = d0(E — Ep)
for some Eg < Ek, the solution for t > 0 and E < Ej is

2E 5

P(E, t) = e=57§(E — Ep) + > (e“f'r _ ebor (E) _3en)

&o

for E < Ey, where £=E? Eo = Eg/z,
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Attractor solution

Long time behavior? Consider the limit &7 — oo with £7 fixed. All the terms which
depend on Eg are exponentially suppressed, and P(E, t) reduces to the simple function

= 1
P(E,t)%P(E,t)EgE EoT — 00
The time evolution of any other initial distribution Q(E,t = 0) = Py(E) localized around

some Eg is given by integrating the delta function solution.

Q(E,t=0) = /Ooo dE'§(E — E')Py(E')

= Q(E, t)—)/oo dE'Po(E"YP(E,t) = P(E,t) as & —
0

This suggests we have an attractor solution given by P(E, t). We verify this by solving
the equation numerically.
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P(E,t) for a black hole undergoing scalar emission below Ep,

0.0
0.0 0.2 04 0.6

Solid lines: the numerical solution starting from a delta function distribution at; Eg = Ep. Dashed

lines: the attractor solution P(E).
17 /41
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A scaling symmetry of EP

P(E, t) exhibits a kind of scaling symmetry which fixes the time dependence of {E(t)),
and likewise the dependence of (dE/dt) on (E).

E P depends only on the combination E5/2t, so it is invariant under the rescaling
t—nt E — n_%E

At long times, the expected energy is

(E(t)) = / dEEP(E, t)
0
oc—l,; S’éf(z) z = E%?¢
ts JO Z5

where f(z) is some function of z. Likewise, this fixes

dE

(55 o (EY'/2
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Evaporation history of a charged BH coupled to the standard model

Our universe contains no known massless scalars.

Recently lliesiu, Penington, Usatyuk, and Brown studied the evaporation history of a
charged BH coupled to the standard model.® See Penington’s Strings 2025 talk.

If the BH has Qinitial > 1.8 x 10%**q, Schwinger pair production is exponentially
suppressed, and the BH will lose energy faster than charge, driving it toward extremality.

It will spend the majority of its lifetime at energies E < Ep.

In this regime, the black hole alternates between two dominant radiation channels:
emission of single photons from a black hole with angular momentum j = 1/2 or emission
of entangled pairs of photons with zero net angular momentum ( “di-photons”) from a
black hole with j = 0.

6Brown et al. 2024.
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Evaporation history of a charged BH coupled to the standard model

—— StaXes

341102443  Brown Tliesiv Fenin%’wn Vsatyok ‘2t
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? 103 (‘\')

Q/Q, QG

This motivates us to study the evolution of the black hole state under these two radiation

channels in the Schwarzian regime. 1
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Transition rates for photon, di-photon emission

lliesiu et al. computed the Schwarzian-corrected transition rates in these channels. In the
low energy limit E < Eyyy,

1
¢ = 1 photon emission, j =1/2 BH  ~(E,E') = Ebrk rBe > (E — E')?

4
di-photon emission, j = 0 BH v(E,E') = (8.2 x 107%) —— 040 EXN ri®e>(E — E'Y

18973

The primary difference between the three cases is in how v scales with the energy of the
emitted mode. The powers are

scalar emission
photon emission

di-photon emission

For a = 3,7 we also find attractor solutions with scaling symmetries. EP depends only
3
on E2149¢,
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Photon emission attractor solution

For BH with angular momentum j = 1/2, the energy spectrum starts at M = Q + %Ebrk.
We denote e = E — %Ebrk.

~ 2 4
P(z) =vz'/? + viz 3F3 (5? 3

S, (g 8 V26

9’9 9

9°9 9 9

o, (4 10 iv/26 10

sl — Ect
315 >

- 9
€ =¢2

_ 9/2
The v; are constant, order one coefficients. c3 = 29 iEbr/k
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P(e, t) for a j = 1/2 black hole undergoing single photon emission below
Eprk

— 3t = 50
cst = 500
cst =1000

— c3t = 1500

Solid lines: numerical solution starting from d(¢ — E, k). Dashed lines: attractor solution.
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Timescale for approach to the attractor

The relevant timescale for the approach to the attractor is about two orders of magnitude
larger than in the case of scalar emission.

This is because the probability density is most naturally a function of z E3/2ta¢ and
has support when z is order one.

For the scalar, z x E®/?t, so for E to decrease by a factor of 10, t must increase by a
factor of 105/2 ~ 3 x 102.

For photon emission, z E9/2t, so t must increase by a factor of 109/2 ~ 3 x 10%.

Because the distribution is evolving more slowly, it also takes longer for the numerical
solution to converge to the attractor.
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Di-photon emission attractor solution

The solution is again a linear combination of generalized hypergeometric functions
(parameters are suppressed)

P(z) = w27 + vz 1F2(2) + oz 1F7(2) + ... + voz 1F2(2)
4096

17
E=E> ’I‘—109395C7t Z—a

6402 E17/2

. o _ —4 16
The v; are constant, order one coefficients. ¢; = (8.2 x 107%) X T80+ Eork T+ -
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P(E,t) for a j = 0 black hole undergoing di-photon emission below E

— ¢t =107
cst = 10°
— c;t=108

— crt=10"

Solid lines: numerical solution starting from §(E — Ek). Dashed lines: attractor solution.
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Corrected spectrum and emission rates

In all cases, the scaling symmetry fixes the time dependence of (E(t)) to be

(E(8)) o —

t3+2a

These are the same powers found by computing the energy flux dE/dt in a
microcanonical state and integrating with respect to time.” However, the overall
coefficients are different.

We will now discuss the results for (E(t)) , (dE/dt), and the Hawking emission spectra

_dE_ i1 the various attractor states.
dtdw

7Brown et al. 2024.
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Scalar emission - corrected Hawking spectrum and energy flux

8 /b 4
)=y §r(§

We can compare this to the microcanonical result. The energy flux from a black hole in a
state of fixed energy E; is

Comparing at the expected energy (E) = E;, the energy flux in the attractor state is
larger than the one in the microcanonical ensemble by a factor of ~ 3.4.
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Scalar emission - corrected Hawking spectrum and energy flux

1
— microcanonical state, E;= — E 4
100

— 1
—— attractor state P (E), (E) = — E,,
(E), (E) 100 ot

E;
Hawking radiation into the £ = 0 massless scalar mode at energy (E) = ﬁEbrk. Blue:
the spectrum in the attractor distribution which the black hole would occupy at long
times. Red: spectrum in a microcanonical state.
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Photon emission - corrected Hawking spectrum and energy flux

For (E) < Epk, € < (E), E;/fqt > 1 the expected energy and energy flux of £ =1
photons from a fermionic black hole is

(e) ~ 0.706976 x (c3t)2/9
de

()~ —182.659 x c3(e)11/?

We can again compare this to a black hole in a microcanonical state with the same
expected energy, E; = (E). In the microcanonical ensemble, the energy flux is

de

In this case, the energy flux in the attractor state is larger by a factor ofi~ 14.3.
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Photon emission - corrected Hawking spectrum and energy flux

dEe

dtdw

1
—— attractor state P, () = — E,,
(€) 100 2ok

1
— microcanonical state, ;= — E;
100

€;

Hawking radiation into ¢ = 1 photons from a black hole with j = 1/2 and energy
(E)= ul)—OEbrk. Blue: Spectrum in the attractor distribution which the black hole would
occupy at long times. Red: microcanonical spectrum.
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Di-photon emission - corrected Hawking spectrum and energy flux

For (E) < Eork, gyt crt > 1,

(E(t)) ~ 0.541649 x ErE

)~ —21.5765 x ¢ (E)1%/2

(4E
dt

For comparison, the microcanonical emission rate is

dE 65536 19/2
T =22 M2 E o« E,
dt |z 2078505 ' S

The energy flux in the attractor state is larger by a factor of ~ 684.
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Why is the energy flux so much larger in the attractor state?

The microcanonical emission spectrum in the low energy limit is

dN
S —i@ w/ E; — w@(E; — CLJ) E; < Epnk

dtdw | ¢

The spectrum in the attractor state is given by integrating against the microcanonical one,
dN dN

e’ ~ fooo e BN e dtdw | -

The microcanonical emission rate has maximum
dN

dtdw

The contribution of each ]E,-) to the total emission rate increases steeply with E;. A
significant proportion of states in P(E) have energy E; > (E), and contribute a significant
amount of energy to the total flux.

This is also why the emission rates peak at a frequency larger than the expected energy of
the black hole state.

2a

+
(Wmax) X Ea 2 Wmax = 2a+1

35/41
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Why is the energy flux so much larger in the attractor state?

The microcanonical emission spectrum in the low energy limit is

dN
S —i@ w/ E; — w@(E; — CLJ) E; < Epnk

dtdw | ¢

The spectrum in the attractor state is given by integrating against the microcanonical one,
dN dN

e’ — fooo e BN e dtdw | -

The microcanonical emission rate has maximum
dN

dtdw

The contribution of each ]E,-) to the total emission rate increases steeply with E;. A
significant proportion of states in P(E) have energy E; > (E), and contribute a significant
amount of energy to the total flux.

This is also why the emission rates peak at a frequency larger than the expected energy of
the black hole state.

2a

+
(Wmax) X Ea 2 Wmax = 2a+1

35/41
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Conclusion

We discussed the energy probability density P(E, t) of the charged black hole as it evolves
towards extremality in the deep quantum gravity regime.

Below the breakdown scale Ey, where the Schwarzian becomes strongly coupled, the
state of the black hole evolves toward a non-thermal, universal long-time distribution.

The attractor solutions effectively depend only on one combination of energy and time
which fixes the powers of time and energy in (E) and (dE/dt).

The Hawking fluxes calculated in the attractor state can be much larger than those in a
microcanonical state with the same expected energy.
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Future directions

The evolving state of other types of near-extremal black holes such as Kerr-Newman?® or
near-BPS black holes in N/ = 2 supergravity.

Possible phenomenological implications for the lifetime of near-extremal charged
primordial black holes.

Schwarzian corrections to the decoherence rates of quantum systems in the exterior of
near-extremal black holes, such as in the thought experiments proposed by Wald et al.®

SMauIik, Meng, and Pando Zayas 2025.
9D:-mi«szlson, Satishchandran, and Wald 2022; Gralla and Wei 2024.
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Thank you for your attention.
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Di-photon emission - Hawking spectrum and energy flux

= 1
—— attractor state P, (E) = — Ej,
100

1
— microcanonical state, E;= — Ej
100

Hawking radiation into entangled singlet states from a black hole with j = 0 and energy
GBI = 1é—OEbrk. Blue: Spectrum in the attractor distribution which the black hole would
occupy at long times. Red: microcanonical spectrum.
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