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Abstract:

Local subsystems play a fundamental role in theoretical physics, but they are usually defined in terms of background spacetime
structures, in particular a Lorentzian metric. In gravity there are no such structures and the metric becomes dynamical. | will
argue that nevertheless subsystems can be constructed in relation to other degrees of freedom, subject to the requirement that
those variables reside within the subsystem itself. In operational terms an observer located within the system should be able to
determine its edge by taking measurements within that region only. Within the context of classical field theory, | will
demonstrate that this guarantees that the observables describing the system constitute a closed Poisson algebra. I'll discuss
some examples, explain how surface charges generating subsystem symmetries, including the Bekenstein-Hawking area

entropy, are incorporated, and make some remarks about how this can be extended to a fully quantum treatment within the
framework of deformation quantization.
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Introduction

The concept of a local subsystem is fundamental to the predictive power of physics. In quantum field

theory, this takes a particularly sharp form:

A subsystem is a causally complete spacetime region. Its degrees of freedom are
encoded in an algebra of observables constructed from the dynamical fields. [Haag 1992]

The algebras of spacelike separated subsystems commute.

/\
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We want to extend this concept to quantum gravity, at least within effective field theory. There are two
problems:
* Causal structure in gravity is dynamical

» Diffeomorphism invariance precludes local observables

(L)

¢ o(T) N

It’s well-known that the resolution to the second is to consider relational observables, which are located
with respect to dynamical degrees of freedom. [Bergmann+Komar 1960] Therefore it’s natural to consider

relational subsystems. [Kirklin et al. 2022, Chandrashekhar et al. 2022]
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There are two objections in the literature:
* Dressing requires nontrivial structures to define locations. These may not exist in all states.
This 1s alright; we only need a dressing prescription to be defined in a class of states where the

structures exist.

* Relational observables that seem spacelike separated may not commute, unless their dressings are also
spacelike separated. This has been achieved in simple examples , but
have argued that it generically obstructs defining independent subsystems.

This is premature! If we're careful, we can find a notion of subsystems that respects microcausality.
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I claim that gravitational subsystems can be defined consistently iff the dressing is internal.

In operational terms, an observer inside the subsystem can determine its edge by taking
measurements, without ever leaving the system. Again, the prescription need only be defined in a
class of neighbouring states.

For illustration, consider

* The causal patch accessible to a worldline observer

 The domain of dependence of an extremal surface
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For the purposes of this talk, I will work within classical field theory and study the structure of Poisson
brackets using the covariant phase space formalism. This determines the leading order contribution to
quantum commutators in an expansion in 2. We will see the following results:

« The observables localized in an internally dressed subsystem form a closed Poisson algebra.

* On the causal complement, they generate field-dependent gauge transformations.

* Observables belonging to spacelike separated subsystems Poisson commute.

The plan:

» Describe the framework needed

« Explain the main results

* Schematically discuss a few examples

* Implementing symmetry charges (B-H Area?)

« Path to including all orders of A in deformation quantization
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Assumptions

We will consider field theories on a fixed manifold M satisfying a few criteria:
* The dynamical fields ¢% are smooth sections of some vector bundles
* Background fields are also smooth, but fixed
*  Will be dropped for generally covariant theories
* One of the fields is a Lorentzian metric g
* Required to be globally hyperbolic

* The Lagrangian is a top form constructed locally out of the fields and their derivatives

* Varying the action with respect to ¢% yields the equations of motion E,
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The metric must determine the causal structure. A precise formulation of this is subtle; we will
need to focus on the linearized equations around any particular solution. From experience we know
that in physical examples, these are (Leray) hyperbolic with respect to g in some choice of gauge, so
initial data on a partial Cauchy surface determines a unique solution in the domain of dependence.
* Yang-Mills
* Einstein gravity

This 1s a natural but somewhat awkward requirement. Instead we will make two gauge-
independent postulates, that only refer to the existence of linearized solutions. These can be verified

readily in the hyperbolic case.

/A0 O
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Assumption 1:

For any solution and partial Cauchy surface, there exists a definition of data for the linearization that is:
* Constructed out of the linearized fields and their derivatives up to some finite order

* Possibly subject to some local, differential constraints from the EoMs

/A0 O
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Assumption 2:

Let a Cauchy slice be partitioned in two, and consider smooth linearized solutions on the domain
of dependence of each, that agree to all derivatives at the intersecting surface.

Then there exists a linearized solution on the complete domain of dependence.

/A0 O
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Field Space Geometry

The covariant phase space method treats the space of configurations as an infinite dimensional
manifold, and the solution space as a submanifold. It’s standard to take a heuristic attitude, which
we will also do. Because we took the configurations to be smooth, the configuration space is a Frechet
manifold. We can use exterior calculus on such manifolds, which is enough to carry out the usual

construction of a symplectic form.

Warning!: The Frobenius theorem fails on Frechet spaces. This has a concrete physical
Interpretation in gravitational theories in terms of the absence of local observables. We will run into

vector distributions that are involutive; remember that they are not necessarily integrable.
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Covariant Phase Space

The symplectic form on solution space is obtained by integrating an object w called the symplectic

current on a Cauchy slice:

* is a locally constructed D — 1 form on spacetime, and a two-form on solution space.

* There is an ambiguity corresponding to the addition of edge terms. This can be resolved by imposing
boundary conditions and being careful about the action principle. We will assume
that some such prescription has been applied; it doesn’t matter which.

» After this, the symplectic form is conserved on-shell; the choice of Cauchy slice doesn’t matter.

=] w
C
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Poisson Brackets

We can use this symplectic form to define Poisson brackets in the usual way, but there are
subtleties. An observable R generates a flow ¥ (which is a vector tangent to solution space)

if R = Q(,x).

« If Q has null directions, R must be invariant under them. These are the gauge transformations.

» Not all observables generate flows. For example, the field at a point in scalar field theory does

not generate a smooth flow.

@ (x)
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We will call observables that generate a flow regular observables. Other observables are called singular.

* The Poisson bracket of a regular observable R with any other observable O is defined by {0, R} = 8§0(y).
« If Ry = {Ry,R;,}, then it generates X3 = [X2,X1]-

There is a natural quantum interpretation that works in most cases. The regular observables stand for
operators in the quantum theory that act on the set of Hadamard states, as these go to smooth solutions in
the classical limit. The singular observables stand for quadratic forms on this set, which have expectation

values but do not actually act as operators. In some cases there can be quantum anomalies.
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What 1s a Gauge Symmetry?

We have defined gauge transformations as null directions of the symplectic form.

There 1s also a notion given to us by , which defines gauge transformations as symmetries of
the action containing free parameters that vanish sufficiently fast towards global boundaries.

* Noetherian symmetries are local.

» They are also computable, as a consequence of Noether’s second theorem.

Is there a relationship between these concepts? In one direction, certainly; Noetherian symmetries are

symplectic gauge transformations.
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Locally Gauge Flows

The main technical engine of this work is a theorem which goes in the opposite direction:
Consider a partial Cauchy surface X, and suppose that a flow X satisfies Qy(1,X) =0

for all flows n that vanish smoothly towards (finite) edges of Z.

Then X is equal to an infinitesimal Noetherian gauge symmetry throughout the entire domain of
dependence of E. This means that it is the restriction of a symplectic gauge transformation to the domain of

dependence. (There is a caveat with linearization instabilities).
0/ A®O
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The causal properties of the theory are essential for this to work. To illustrate this, consider the following
example in scalar field theory, where there are no gauge transformations:

Z:’

Consider a flow that vanishes on Z but is nonvanishing on the rest of the Cauchy slice. This will propagate
forward to be nontrivial on X', which is a partially timelike surface homologous to Z.

This flow satisfies the criteria of X for the previous theorem. Since the symplectic current is conserved, we
know that this is true on X’ as well as X. However, the flow does not vanish on X', so the theorem fails on

that surface.
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Subsystems in Gauge Theory

This is enough to start proving results about subsystems in gauge theory. Consider a partial Cauchy

surface X and its complement Z.

* Define the vector distribution §'(Z),on solution space to consist of flows that restrict to gauge

transformations on £ (likewise §'(X)).

» These are exactly the flows that can be split into gauge transformations and flows vanishing at the edge.

/A0 O
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These distributions have two critical properties:

* They are involutive, as shown by a simple computation.

« They are symplectic complements of each other; for x € §'(%), Q(x, ) = 0iff € S'(2) and vice
versa.

The “if” direction is easy; the “only if” follows from the gauge theorem.
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The observables supported on I are precisely the functionals that are invariant under §’(£). This implies a

sequence of statements:

» Because §’'(Z) are also gauge throughout the DoD, the same statement applies to the observables in the
DoD. In other words, the observables in the DoD and on X are the same. (More detail requires causality).

* A regular observable in this region must generate a flow belonging to §'(Z), in order to symplectically
annihilate the flows in §'(Z). Conversely, the observables that generate flows in §'(Z) (everywhere in

solution space) are exactly those that are in the region.
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» The Poisson bracket of two subregion regular observables always generates a flow in §'(Z), and must be
a subregion observable itself! The subsystem has a closéd algebra.

* Finally, regular observables in one region commute with all observables in the complement.

/A0 O
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The recipe is as follows:
* First gauge fix so that X is always part of a fixed Cauchy surface (this is very weak, and just for
convenience).
» Then, choose a set of functionals G¥. These must
« Form a valid gauge fixing scheme, so that any solution is connected to a solution where G¥ = 0 by a
gauge path.
* Depend only on the fields in the DoD of X, so that infinitesimal perturbations outside of this region
do not affect them.
* Completely eliminate diffeomorphisms that move 0Z.
Again, these need only be defined in a class of states. For example, in an open set of solution space where
there is a single extremal surface, its location can be gauge fixed to 9%, in which case G* consists of the

expansions on JdZX.
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This is enough to get observables that are constructed only out of fields in the DoD. We'll see some
examples later. Note that adding more gauge fixing conditions, beyond those used to fix the edge, does not

increase the number of subregion observables. However, it may rewrite them in a simpler form.
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Dressed Subsystem Algebras

We want to extend the results we found for subsystems in gauge theories. The distributions §'(Z) and §'(%)

restrict to the constraint surface defined by G¥ = 0. They are still involutive, and are symplectic complements of

each other.

L]

The flows in (restricted) S’ (Z) can be decomposed as before into the sum of a flow vanishing in the DoD of X
and a gauge transformation. Since G¥ are supported in the DoD, the former does not affect them, so the

latter must be a residual gauge transformation.
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Thus, gauge fixed observables supported in the DoD of ¥ are again exactly those that are unaffected
by §’(£). The opposite is not true, because after splitting a flow in §'(Z) the gauge
transformation is not necessarily residual. The two parts may separately affect G¥, such that

their contributions cancel.
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Microcausality

This excludes the result about commutativity of complementary regions. This no longer holds because
the observables in the causal complement need not be invariant under §'(Z). They are also not

guaranteed to form an algebra.

)3 X

However, there is a way around this. Suppose there are two internally dressed subsystems that are, in
an open region of solution space, spacelike separated. The flows in §'(Z) are gauge in the causal

complement, so they can be “turned off” before reaching the DoD of ¥’. These algebras commute.
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Example: Scalar Models

Consider 4 scalar fields that form coordinates for some region of spacetime in an open set of solution
space. The codimension-2 edge of a subsystem can be located as a fixed function of these coordinates.
There are variations on this theme that are more physically sensible, using curvature scalars

or dust fields

- ¢11¢2 =0
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Example: Causal and Extremal Wedges

Now consider a two-sided aAdS spacetime, and a boundary spatial subregion. The causal wedge is the
intersection of the causal future and past. Gauge-fixing the light sheets to fixed locations exhibits this
as an internally dressed subsystem. The causal complement is not internally dressed, and the two do

not commute.

However, the entanglement wedge bounded by the HRT surface is specified by a condition supported
purely on the codimension-two edge. This means the causal complement 1s also internally dressed. They

form commuting algebras.
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Surface Charges

Charges that generate surface symmetries of a subsystem, while commuting with the exterior,
have some applications . They are locally constructed on the entangling
surface, and are not regular observables. They can still be interpreted as generating a
distributional flow by dualization. There is not a unique charge associated with a given symmetry;

the exact choice depends on the singularity structure of the distribution.
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Surface Charge : Electromagnetism

Consider a “gauge transformation” supported on a Cauchy surface in electromagnetism.

If the transformation is defined as 64 = 8dA, where 0 1s a step function, the generator of this flow is
the smeared electric flux [, AE.

On the other hand, if it is defined as 64 = d(61), then the generator is zero; this is a “true singular

gauge transformation”.

The only difference between the two flows is a delta function contribution at the interface.
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The latter flow is an “on-shell” flow; the distribution satisfies the equations of motion.
The former is not. It is only on-shell when the surface is extremal, as only then is the area invariant at

linear order.
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Surface Charge : Kink Transform

A similar story applies for the “one-sided boost” around a codimension-two surface.

If the infinitesimal flow is defined as 6g = 8Lgg, its infinitesimal generator is (minus) the

Bekenstein-Hawking area term.

If instead it is 8g = Lggg, then the generator is zero.

Nell
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Quantization

The natural framework to extend this to higher orders in i is deformation quantization. This is nontrivial

to apply to field theories, due to the issue of renormalization.
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