Title: Rethinking The Black Hole Corona as an Extended, Multizone Outflow

Speakers: Lia Hankla

Collection/Series: Magnetic Fields Around Compact Objects Workshop

Subject: Strong Gravity

Date: March 26, 2025 - 11:45 AM

URL: https://pirsa.org/25030112

Abstract:

Observations of luminous black holes in X-ray binaries and Seyfert galaxies show power-law emission, thought to originate from photons that inverse Compton scatter off a hot electron cloud. If the coronal electrons are heated by magnetic dissipation, i.e. reconnection or turbulence, then one might expect to observe direct synchrotron emission in the radio/mm from these electrons. However, because timing studies

constrain the X-ray emission to be within ~ 10 rg of the central black hole, the direct synchrotron emission from this compact volume would be strongly self-absorbed until much further away from BH. In this talk, I will question the de facto definition of the corona as a compact, X-ray-emitting region and shift instead to a paradigm where the corona encompasses multiple layers with distinct spectral components. Motivated

by highly-magnetized winds found in GRMHD simulations, I will present a model for such an extended, outflowing corona. I will discuss this model in the context of radio-quiet AGN, where recent observations have demonstrated the presence of compact mm emission.

Rethinking The Black Hole

Lia Hankla Rostom Mbarek Sasha Philippov University of Maryland, College Park

What is the (AGN) Corona?

• A region that emits a certain type of radiation?

Phenomenological definition: source of X-rays -- defining feature of AGN

What is the (AGN) Corona?

• A region that emits a certain type of radiation?

Phenomenological definition: source of X-rays -- defining feature of AGN

- \circ Compact (within 10r_a), hot (10⁹ K)
- A region with a certain magnetic field geometry?

Historical analogy with the solar corona

Magnetic field geometry?
 Reconnection-powered flares?

What is the (AGN) Corona?

• A region that emits a certain type of radiation?

Phenomenological definition: source of X-rays -- defining feature of AGN

- \circ Compact (within 10r_a), hot (10⁹ K)
- A region with a certain magnetic field geometry?

Historical analogy with the solar corona

 Magnetic field geometry? Reconnection-powered flares?
 2025-03-26

Redefine: region accelerating particles

Lia Hankla

Whatever it is, the corona could be important for...

- Determining properties of the plasma close to the black hole
- Studying particle acceleration processes
 - Reconnection + turbulence
- Mediating magnetic field transport and structure
 - Jet launching: 1ES 1927
 - Impact on angular momentum transport?

"Coronal" Quasi-Periodic Oscillation (QPO)

A Magnetically-powered X-ray corona

- Compact: R_c≈10 rg from timing, reverberation studies
- Ноt: Т_{_}≈10⁹ К
- Hot: T s= 10° K Dissipated magnetic energy = X-ray luminosity: $L_X \leq \frac{B_0^2}{8\pi} 4\pi R_c^2 c$

Do

2025-03-26

A Magnetically-powered X-ray corona

- Compact: $R_c \approx 10$ rg from timing, reverberation studies
- Hot: T_e≲10⁹ K
- Hot: T_e=10⁹ K Dissipated magnetic energy = X-ray luminosity: $L_X \leq \frac{B_0^2}{8\pi} 4\pi R_c^2 c$

$$\frac{B_0}{100 \text{ G}} \ge \left(\frac{L_X}{10^{43} \text{ erg/s}}\right)^{1/2} \left(\frac{R_c}{10r_g}\right)^{-1} \left(\frac{M}{10^8 M_{\odot}}\right)^{-1}$$

Lia Hankla

2025-03-26

A Magnetically-powered X-ray corona

- Compact: $R_c \approx 10$ rg from timing, reverberation studies
- Hot: Т ֱ≍10⁹ К
- Dissipated magnetic energy = X-ray luminosity: $L_X \leq \frac{B_0^2}{8\pi} 4\pi R_c^2 c$

$$\frac{B_0}{100 \text{ G}} \ge \left(\frac{L_X}{10^{43} \text{ erg/s}}\right)^{1/2} \left(\frac{R_c}{10r_g}\right)^{-1} \left(\frac{M}{10^8 M_{\odot}}\right)^{-1}$$

Reconnection or turbulence accelerates nonthermal particles

Where is the synchrotron emission?

Power-law of electrons

Lia Hankla

2025-03-26

Coronal Synchrotron Emission in the mm range

"Coronal" Synchrotron Emission is Not Optically Thin

"Coronal" Synchrotron Emission is Self-Absorbed

Proposal: an extended (coronal) outflow

- Magnetic field gradient: higher frequencies from smaller radii (higher B)
- Mildly relativistic (no beaming), as in winds in GRMHD simulations, solar wind

Proposal: an extended (coronal) outflow

- Magnetic field gradient: higher frequencies from smaller radii (higher B)
- Mildly relativistic (no beaming), as in winds in GRMHD simulations, solar wind

Motivation: GRMHD Simulations

Liska+ 2022: RADTOR thin disk

- H/r=0.03
- Two-temperature
- Radiation: M1 closure

Motivation: GRMHD Simulations

Liska+ 2022: RADTOR thin disk

- H/r=0.03
- Two-temperature
- Radiation: M1 closure

Lia Hankla

Radial Profiles of the GRMHD Wind

Liska+ 2022: RADTOR thin disk

Where does the mm emission come from?

Analytic Prediction for Flux Spectral Index

Sum up contributions from different wind heights.

• Flatter spectrum than $v^{5/2}$

$$\alpha_{\rm F} = 0.5 \pm 1.2$$

Lia Hankla

2025-03-26

Analytic Prediction for Flux Spectral Index

Analytic Prediction for Lmm/LX

- X-ray luminosity from magnetic reconnection or turbulence: $L_x \sim B_0^{-2} R_c^{-2}$
- Particle acceleration: depends on plasma magnetization σ_0

$$\frac{L_{\rm mm}}{L_{\rm X}} \sim \nu^{-\alpha+1} \left(\frac{\sigma_{e0}}{M}\right)^{\beta-1}$$

Lia Hankla

Implications for variability, simultaneous X-ray/mm

- Observations of mm variability on 1e4 s time-scales constrain source size to be
 <~ 1000 rg (Petrucci+ 2023, Michiyama+ 2024, Shablovinskaya+ 2024)
 - Constrains size of emitting structures

2025-03-26

Implications for variability, simultaneous X-ray/mm

- Observations of mm variability on 1e4 s time-scales constrain source size to be
 <~ 1000 rg (Petrucci+ 2023, Michiyama+ 2024, Shablovinskaya+ 2024)
 - Constrains size of emitting structures
- Correlation between X-ray/mm could be tricky
 - Not the same electrons radiating X-ray and mm. Need to be re-accelerated!
 - Contributions from multiple heights

$$t_{\rm sync} = 5 \times 10^3 \,\mathrm{s} \left(\frac{\gamma}{10}\right)^{-1} \left(\frac{B}{100 \,\mathrm{G}}\right)^{-2}$$

Lia Hankla

2025-03-26

Pirsa: 25030112

23

De

Conclusions

"Corona" as particle acceleration region: doesn't just emit X-rays!

 mm emission could probe dissipation close to the black hole

Strong magnetic fields in a compact region --> synchrotron self-absorbed --> mm must come from **extended region** --> inhomogeneous coronal outflow.

2025-03-26

Conclusions

"Corona" as particle acceleration region: doesn't just emit X-rays!

 mm emission could probe dissipation close to the black hole

Strong magnetic fields in a compact region --> synchrotron self-absorbed --> mm must come from **extended region** --> inhomogeneous coronal outflow.

2025-03-26

Lia Hankla