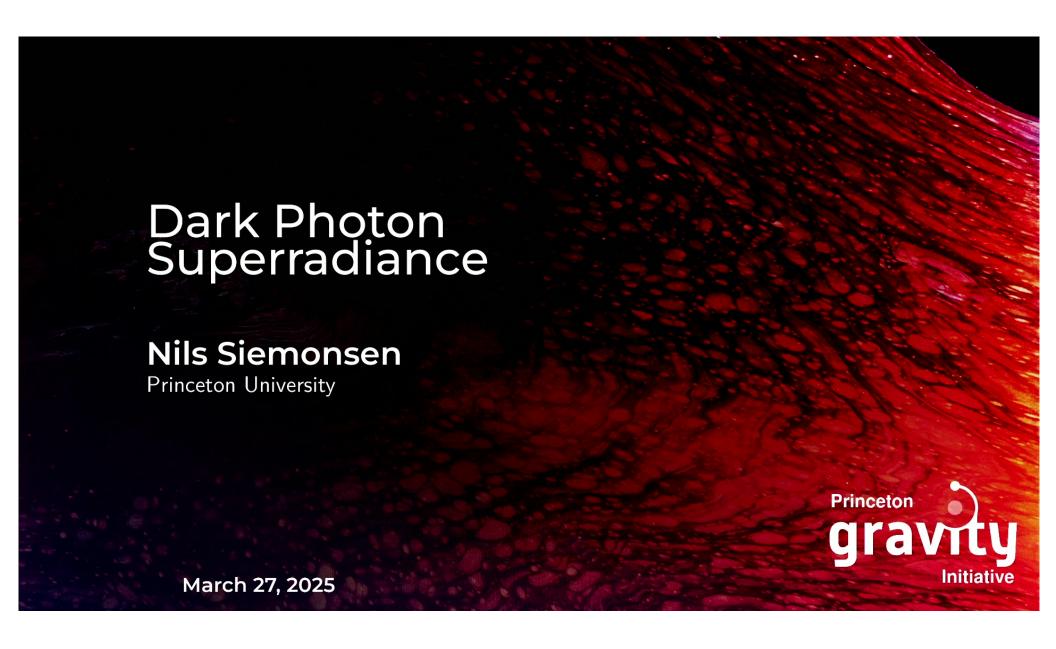
Title: Dark Photon Superradiance **Speakers:** Nils Peter Siemonsen

Collection/Series: Magnetic Fields Around Compact Objects Workshop


Subject: Strong Gravity

Date: March 27, 2025 - 11:00 AM **URL:** https://pirsa.org/25030088

Abstract:

Gravitational and electromagnetic signatures of black hole superradiance are a unique probe of ultralight particles that are weakly-coupled to ordinary matter. Through the kinetic mixing with the Standard Model photon, a dark photon superradiance cloud sources a rotating visible electromagnetic field. I will describe how this leads to the production of a turbulent pair plasma, characterized by efficient magnetic reconnection, which radiates large-luminosity high-energy electromagnetic emissions. This enables multi-messenger search strategies to probe unconstrained regions of parameter space.

Pirsa: 25030088 Page 1/12

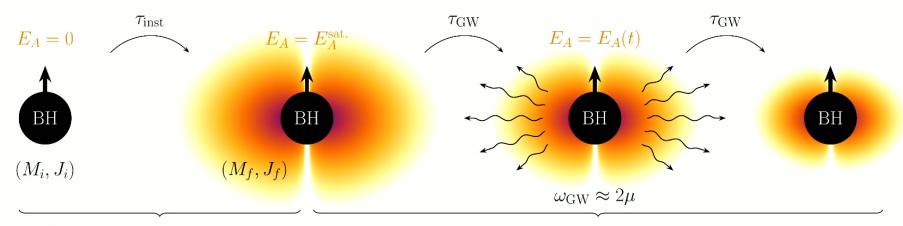
Pirsa: 25030088 Page 2/12

Q: How can we probe fundamental physics using astrophysical systems?

Why?

- Strong CP-problem, dark matter
- Low-energy limit of quantum gravity models

Candidates:

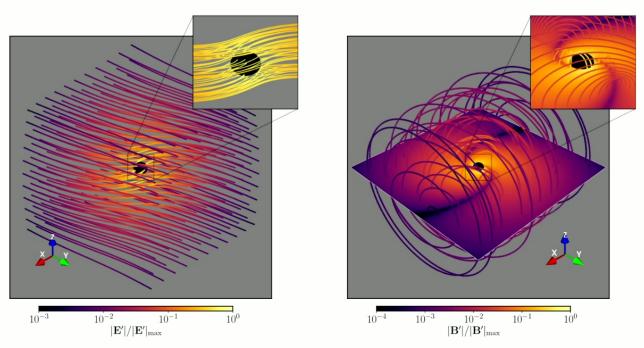

- Axion (spin-0)
- Dark photon (spin-1)

Couplings:

- Axion-photon
- Kinetic mixing

Pirsa: 25030088 Page 3/12

Superradiance Instability Phase


Gravitational Wave Emission Phase

- Instability timescales: $\tau_{\rm inst} \sim 2 \, {\rm min} \, \left(\frac{M_{\rm BH}}{10 M_{\odot}}\right) \left(\frac{0.1}{\alpha}\right)^7$
- Gravitational wave timescales: $\tau_{\rm GW} \sim 33~{\rm days}~\left(\frac{M_{\rm BH}}{10M_{\odot}}\right)\left(\frac{0.1}{\alpha}\right)^{11}$
- Cloud frequency: $\mu \sim 320~{\rm Hz}~\left(\frac{10M_{\odot}}{M_{\rm BH}}\right)\left(\frac{\alpha}{0.1}\right)$
- Cloud size: $a_{\rm Bohr} \sim 100 \left(\frac{GM_{\rm BH}}{c^2}\right) \left(\frac{0.1}{\alpha}\right)^2$

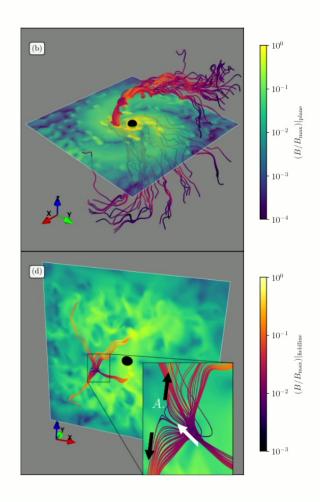
Dark Photon Superradiance NS, Mondino, Egaña-Ugrinovic, Huang, Baryakhtar, East

Dark photon dynamics:

- Kinetic mixing $\varepsilon \Rightarrow$ visible electromagnetic field
- \bullet Large electric fields: $E \sim 10^{13} \ \mathrm{V/m}$
- Pair production cascade fills dark photon cloud

Pirsa: 25030088 Page 5/12

Dark Photon Superradiance

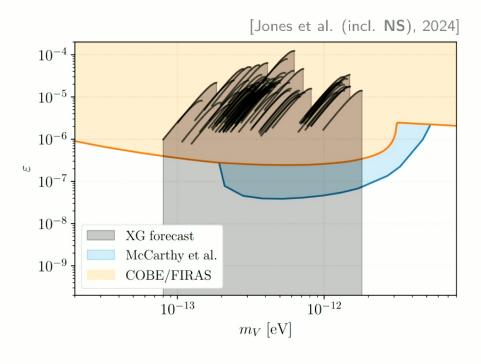

NS, Mondino, Egaña-Ugrinovic, Huang, Baryakhtar, East

Dark photon dynamics:

- Kinetic mixing $\varepsilon \Rightarrow$ visible electromagnetic field
- Large electric fields: $E \sim 10^{13} \text{ V/m}$
- Pair production cascade fills dark photon cloud

Endstate of cascade:

- Turbulent (almost) force-free plasma
- Largely magnetically dominated: $|\mathbf{B}| > |\mathbf{E}|$
- Efficient magnetic reconnection in bulk of cloud
- Strong dissipation: $P_{\text{diss}} \gg P_{\text{Poynting}}$
- Power output: $L \lesssim 10^{43} \text{ erg/s}$
- Some evidence for periodicity \Rightarrow "fake pulsar"
- $|\mathbf{B}| \lesssim 10^8 \text{ Gauss } \Rightarrow \text{X-ray } \& \gamma \text{-ray}$
- ⇒ High-energy electromagnetic signatures

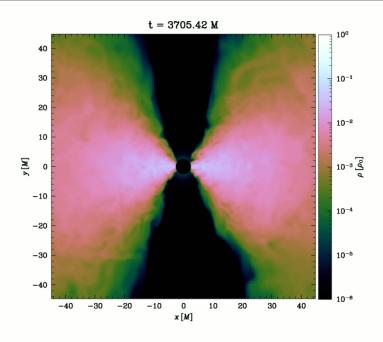


Pirsa: 25030088 Page 6/12

Observational prospects Solar-mass black holes

[Mirasola, Mondino et al. (incl. NS), 2025]

Pirsa: 25030088 Page 7/12

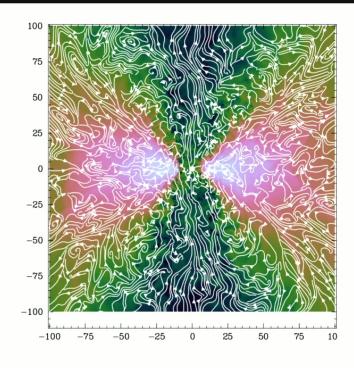

Combi, Huang, Wong & NS, in prep.

Modified GRMHD:

$$\nabla_{\mu}T^{\mu\nu} = \varepsilon f_{\rm DP}^{\nu}$$

Accretion states:

- Very small $\varepsilon \Rightarrow$ same as before
- Small intermediate $\varepsilon \Rightarrow$ jet is perturbed
- Intermediate large $\varepsilon \Rightarrow$ jet is destroyed
- Large $\varepsilon \Rightarrow$ accretion affected


Pirsa: 25030088 Page 8/12

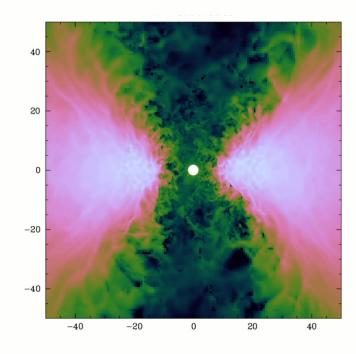
Combi, Huang, Wong & NS, in prep.

Modified GRMHD: $\nabla_{\mu}T^{\mu\nu} = \varepsilon f_{\rm DP}^{\nu}$

Accretion states:

- Very small $\varepsilon \Rightarrow$ same as before
- Small intermediate $\varepsilon \Rightarrow$ jet is perturbed
- Intermediate large $\varepsilon \Rightarrow$ jet is destroyed
- Large $\varepsilon \Rightarrow$ accretion affected

Pirsa: 25030088 Page 9/12


Combi, Huang, Wong & NS, in prep.

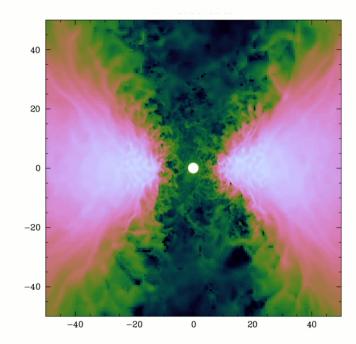
Modified GRMHD:

$$\nabla_{\mu} T^{\mu\nu} = \varepsilon f_{\rm DP}^{\nu}$$

Accretion states:

- Very small $\varepsilon \Rightarrow$ same as before
- Small intermediate $\varepsilon \Rightarrow$ jet is perturbed
- Intermediate large $\varepsilon \Rightarrow$ jet is destroyed
- Large $\varepsilon \Rightarrow$ accretion affected

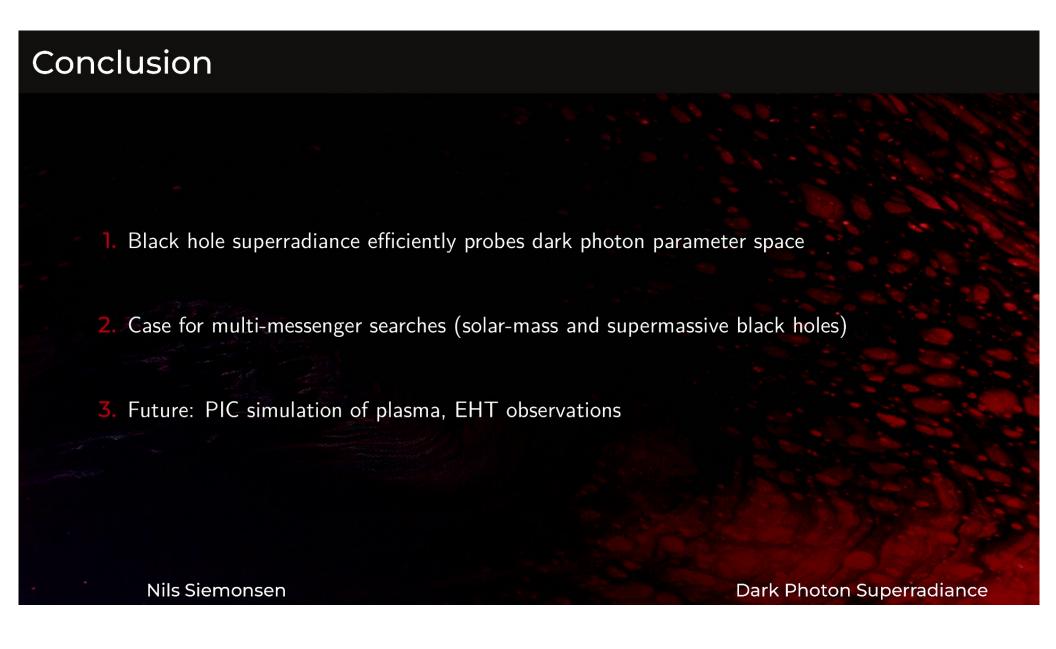
Pirsa: 25030088 Page 10/12


Combi, Huang, Wong & NS, in prep.

Modified GRMHD:

$$\nabla_{\mu}T^{\mu\nu} = \varepsilon f_{\rm DP}^{\nu}$$

Accretion states:


- Very small $\varepsilon \Rightarrow$ same as before
- Small intermediate $\varepsilon \Rightarrow$ jet is perturbed
- Intermediate large $\varepsilon \Rightarrow$ jet is destroyed
- Large $\varepsilon \Rightarrow$ accretion affected

Observational implications:

- Independent spin measurements + AGN/X-rays \Rightarrow strong constraint!
- EHT probes unexplored regions of parameter space
- Subtle effects (perturbed jets/disk modes) \Rightarrow need population information

Pirsa: 25030088 Page 11/12

Pirsa: 25030088 Page 12/12