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Abstract:

A large amount of effort has recently been put into understanding the barren plateau phenomenon. In this perspective talk, we
face the increasingly loud elephant in the room and ask a question that has been hinted at by many but not explicitly addressed:
Can the structure that allows one to avoid barren plateaus also be leveraged to efficiently simulate the loss classically? We
present a case-by-case argument that commonly used models with provable absence of barren plateaus are also in a sense
classically simulable, provided that one can collect some classical data from quantum devices during an initial data acquisition
phase. This follows from the observation that barren plateaus result from a curse of dimensionality, and that current approaches
for solving them end up encoding the problem into some small, classically simulable, subspaces. We end by discussing caveats
in our arguments including the limitations of average case arguments, the role of smart initializations, models that fall outside
our assumptions, the potential for provably superpolynomial advantages and the possibility that, once larger devices become
available, parametrized quantum circuits could heuristically outperform our analytic expectations.
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Does provable absence of
barren plateaus imply
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Hybrid Variational Quantum Computing

training data

Classical
Quantum Computation

Computation

Optimization Loop

For the purpose of this “Any method that optimizes a parameterized quantum circuit (PQC) by
talk | will focus on: minimizing a quantum cost function (potentially using training data)”

Encapsulates: variational quantum algorithms (VQAs) + many QML methods

C/m®O
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Goal: Train a parameterized quantum circuit to
minimize a problem-specific loss

Pick faithful loss + PQC s.t. if successfully trained: the optimal parameters/circuit/cost = approx. solution to problem
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Parameterised
Quantum Circuit/QNN \ /
How do you train? Using a hybrid-quantum classical optimization loop
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Popular flexible framework
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Review: Varational Quantum Algorithms, MC et al, Nature Reviews Physics 3, 625-644 (2021)
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Ingredients to trainability

1. Expressibility

~ how likely it is that the parameterised unitary contains a solution

2. Loss gradients (/differences)

~ how easy it is to find a cost minimizing direction

3. Local minima

~ potential to get trapped in poor minima
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Cost gradients and shot noise

The cost landscape needs to be sufficiently featured to enable training

Small gradients =2 high precision required to —_— resource intensive
find loss minimizing direction

(~ 1/0? shots are required
estimate a loss to precision o )

C/m®O
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Barren plateaus

Barren plateau (BP) phenomena:
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Exponential Cost Concentration

Barren plateau (BP) phenomena:

Var}C] ~ o
) +=
i ar
PIRC| > 8) < VA

Probability of cost deviates from a fixed point
vanishes exponentially with problem size.
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Lots of research on sources of barren plateaus

Barren plateaus in quantum neural network trainin .
landscal::ies * e Inex pressive

Choice in circuit

Vadim M. Smelyanskly

15 B, Article namber: 4812 (2018} | C

Connecting Ansatz Expressibility to Gradient Magnitudes and
Barren Plateaus

* TOO exp reSSive Zoé Holmes, Kunal Sharma, M. Cerezo, ar

PRX Quantum 3, 010313 — Published 24 J:

Coles

"5
2 Accessible space

Expressive

T t i Entanglement-Induced Barren Plateaus
°
OO en ang lng Carlos Ortiz Marrero, Maria Kieferova, and Nathan Wiebe

PRX Quantum 2, 040316 — Published 25 October 2021

: . : Barren Plateaus Preclude Learning Scramblers
Choice in target learning problem J Asvessible-space
Zoé Holmes, Andrew Arrasmith, Bin Yan, Patrick J. Coles, Andreas Albrecht, and Andrew T. Sornbor

Phys. Rev. Lett, 126, 190501 - F*hlished 12 May 2021

Global

Cost function dependent barren plateaus inshallow
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NOi Se wang =, Envico Fontana, M. Cerezo &, Kunal Sharma, akira Sone, Lukass Cincio &
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& lots on provably barren plateau free strategies

No one wants to be (just) the bearer of bad news... certain architectures / methods can be proved to not have BP!

Cost function dependent barren plateaus in shallow
* Shallow hardware-efficient ansatzes with local costs parametrized quantum circuits

/OO
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& lots on provably barren plateau free strategies

No one wants to be (just) the bearer of bad news... certain architectures / methods can be proved to not have BP!

Cost function dependent barren plateaus in shallow
* Shallow hardware-efficient ansatzes with local costs parametrized quantum circuits

zo I~} Akira Sone, Tyler Violkoff, Lukasz Cincio & Patrick J. Coles [

Absence of Barren Plateaus in Quantum Convolutional Neural
* Quantum Convolutional Neural networks ~ Networks

Arthur Pesah, M. Cerezo, Samson Wang, Tyler Volkeff, Andrew T. Sernborger, and Patrick J. Coles
Phys. Rew. X 11, 04101 — Published 15 October 2021
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& lots on provably barren plateau free strategies

No one wants to be (just) the bearer of bad news... certain architectures / methods can be proved to not have BP!

Cost function dependent barren plateaus in shallow

* Shallow hardware-efficient ansatzes with local costs parametrized quantum circuits
M. Cerezo ] Akira Sone, Tyler Violkoff, Lukasz Cincio & Patrick J. Coles [~
Absence of Barren Plateaus in Quantum Convolutional Neural
* Quantum Convolutional Neural networks ~ Networks
Arthur Pesah, M. Cerezo, Samson Wang, Tyler Volkeff, Andrew T. Sernborger, and Patrick J. Coles
Phys. Rew. X 11, 041011 — Published 15 Q.)c taber 2021
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Initializations in Deep Variational Quantum Circuits e
Kaining Zhang', Lin Liu®, Min-Hsiu Hsieh!, Dacheng Tao"
Trainability Enhancement of Parameterized Quantum Cir- Hamiltoni L | ith b |
cuits via Reduced-Domain Parameter Initialization amiitonian variational ansatz without barren plateaus
Yabo Wang!?, Bo Qi'?, Chris Ferrie*, and Daoyi Dang* Chae-Yeun Park and Nathan Killoran
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Barren plateaus = the curse of dimensionality

The loss is expressed as the inner product—a similarity measure

29(p,0) = Tr[U(@)pUT(8)0] = (p(6),0) = Tr[pUT (8)0U(6)] = (p,0(8)),
where p(0) = U(0)pUT(6);0(6) = UT(6)0U(0)

and (4,B) =Tr ATB] the Hilbert-Schmidt inner product.

Red flag:

the inner product between two exponentially large objects will typically be exponentially small and concentrated

Claim 0: BPs = Curse of dimensionality.
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When does this curse of dimensionality kick in?
2(p, 0) = Tr[U(8)pUT (8)0] = (p, 0(8))

Let 0 = Z Cy P; Where can O go when we Heisenberg backpropagate it....

A
Cost function dependent barren plateaus inshallow
parametrized quantum circuits

M. Cereza I, Akira Sone, Tyler Volkoff, Lukasz Cincio & Patrick J. Coles =

Can we explore an exponentially large space?

These questions can be answered by computing |(0(B), PJ,-)|2 for all elements of a basis of the Hilbert space

Global measurement, Local measurement, Local measurement,
shallow circuit. shallow circuit. linear depth circuit.

. A
— T - Circuit depth
] e - Circuit structure

U(0) ' - Measurement 0
B g determine where we can go.
- /'/f'\

f
1 i
0/ @O0
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When does this curse of dimensionality kick in?
2(p, 0) = Tr[U(8)pUT (8)0] = (p, 0(8))

Take 0 = ¥, ¢, P;, and define as B, the subspace associated to each P, under the adjoint action of U(@).

We have
b)
29(p,0) = X;c1(p, P1(8)) = X; ca(pa, P2(8))
where p; is the projection of p onto B;. ;
Pa proj p A P,(0) | P;

The loss is the sum of the inner products in each subspace!

]

If any of the subspaces is only polynomially large the loss can be non-concentrated
If p is too entangled (volume law) the reduced state will be maximally mixed and the loss will be exponentially suppressed.

So, p must not be too entangled (satisfy an area law). Entanglement-Induced Barren Plateaus

Carlos Qrtiz Marrero, Maria Kieferova, and Nathan Wiebe
PRX Quantum 2, 040316 - Published 25 October 2021
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Provable absence of BPs = Problem lives in polynomially subspace

Claim 1: Provably barren plateau-free architectures live in
classically identifiable polynomial subspaces.

* Shallow hardware-efficient ansatzes with local costs / \
Operators in Polynomial subspace

* Quantum Convolutional Neural networks
log(n) local
neighbouring

* Certain Symmetrized Ansatzes Pauli operators

* Small angle initializations K

C/m®O
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Provable absence of BPs = Problem lives in polynomially subspace

Claim 1: Provably barren plateau-free architectures live in
classically identifiable polynomial subspaces.

* Shallow hardware-efficient ansatzes with local costs

* Quantum Convolutional Neural networks . .
Operators in the small lie algebra of

the generators

* Certain Symmetrized Ansatzes

* Small angle initializations

C/m®O
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Provable absence of BPs = Problem lives in polynomially subspace

In the paper we provide a more detailed analysis...

Claim 1: Provably barren plateau-free architectures live in
classically identifiable polynomial subspaces.

Problem instance C based on

‘ Refs.

‘ Operators in the polynomial-sized B ‘ O and p leading to C C BP

Shallow hardware efficient ansatz

[24-27, 29-31]

O(log(n)) neighboring qubits (P)

Generic shallow locally circuits

[105, 106]*

O(1)-weight qubits (E)

Local O, area law p
Local O, area law p

Quantum convolutional neural network

[15]

O(1)-weight qubits (E)

U(1)-equivariant

22, 50, 51]

Proj. with O(1) Hamming weight (P)

Local O, area law p

S,-equivariant
Matchgate circuit

[67]

Permutation equivariant (P)

Equivariant O, p € Bx
O € By, Tr[p3] € Q(1/ poly(n))

[54]

Product of O(1) Majoranas (P)

O € By, Tr[p3] € Q(1/ poly(n))

Small angle initialization

(39, 55, 61]

O(poly(n)) Pauli Operators (E)

Local O, area law p

Small Lie algebra g

[52, 58, 65]

Operators in g (P)

Oe€ig, Tr [pﬁ] € Q(1/ poly(n))

Non-unital noisy-circuits

[70]

O(log(n)) qubits (E)

Local O, any p

Dynamic circuits

[73]

O(1)-weight qubits (E)

Local O, any p

Quantum generative modeling”

29, 32]

Tensor networks (e.g., MPS) (P)

O, p computational basis proj.

Crucially: very proof of absence of BPs allowed us to find poly subspaces (more on this later)

Pirsa: 25030071
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Classical simulability Definitions

Classical Simulation (CSIM) Quantum-enhanced Classical Simulation (CSIMgg)
= = {g(p. O} E - Htl - | == lg(p,0)
/& 5‘ =———x
Problem . 4% Loss = Problem EE—— Loss
Deseription Classical Computer Estimate E Description Cuantum Computer Classical Computer Bstimate

Quantum Simulation (QSIM)

- B -

A

= fy(p, 0)!

-
oo o = B

Probl s o

TODIe - . B - JOBS i

Quantum Computer Classical Computer W,

Deseription Estimate!

A quantum advantage is possible for any problem in CSIM g,z N —=CSIM or QSIM N —-CSIM

An advantage from adaptively running a parameterized quantum circuit is only possible for problems in QSIM N —~CSIM o
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Provable absence of BPs = Problem lives in polynomially subspace

Back to our case-by-case analysis:

Claim 1: Provably barren plateau-free architectures live in
classically identifiable polynomial subspaces.

In each of these cases.... U(@) can be classically simulated
& so the loss can be classically simulated for classical initial states/measurements

Shallow hardware efficient ansatz

Quantum convolutional neural network

U(1)-equivariant

S,.-equivariant

Matchgate circuit

Small angle initialization

Small Lie algebra g

Quantum generative modeling”

(Nothing really new here - this was increasingly discussed but hadn’t fully sunk in all corners)

C/m®O
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Provable absence of BPs = Problem lives in polynomially subspace

Case-by-case analysis:

Claim 1: Provably barren plateau-free architectures live in
classically identifiable polynomial subspaces.

In each of these cases.... U(@) can be classically simulated
& so the loss can be classically simulated for classical initial states/measurements

i Shallow hardware efficient ansatz
Tensor networks <—— mer : ,
Quantum convolutional neural network

U(1)-equivariant

S,.-equivariant

Matchgate circuit

Small angle initialization

Small Lie algebra g

Quantum generative modeling”

C/m®O
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Provable absence of BPs = Problem lives in polynomially subspace

Case-by-case analysis:

Claim 1: Provably barren plateau-free architectures live in
classically identifiable polynomial subspaces.

In each of these cases.... U(@) can be classically simulated
& so the loss can be classically simulated for classical initial states/measurements

Efficient Solvability of Hamiltonians and Limits on the Power
of Some Quantum Computational Models

Shallow hardware efficient ansatz

: i Rolando Somma,’ Howard Barnum,' Gerardo Ortiz,' and Emanuel Knill®
Quantum convolutional neural network Gsim

Efficient classical algorithms for simulating symmetric

(Particle number|conserving) U(1)-equivamant
quantum systems

(Permutation|invariant) S, -equivariant

Erlc R, Anschuetz!, Andreas Baver?, Bobak T, Klan®, and Seth Lloyd*®

Matchgate circuit

Fermion Sampling: A Robust Quantum Computational Advantage
scheme Usin mionic Linear Optics and Magic Input States Classical and Quantum Algorithms for Orthogonal Neural
h Morabes, and Zoltan Zimboras ,\.Ct-\'-’Ol'kS

Small angle initialization

Small Lie algebra g

Tordanis Kerenidis'?, Jonas Landman’™, and Natansh Mathur®?*

Quantum generative modeling” Lie-algebraic classical simulations for variational quantum computing

Matthew L. Goh,#:* Martin Larocca,’? Lukasz Cincio,! M. Cerezo,* and Frédéric Sauvage'
Q/ WO O
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Provable absence of BPs = Problem lives in polynomially subspace

Case-by-case analysis:

Claim 1: Provably barren plateau-free architectures live in
classically identifiable polynomial subspaces.

In each of these cases.... U(@) can be classically simulated
& so the loss can be classically simulated for classical initial states/measurements

Shallow hardware efficient ansatz

Quantum convolutional neural network

U(1)-equivariant

S,-equivariant

Matchgate circuit

Small angle initialization

Small Lie algebra g

Quantum generative modeling”

But | used to say: “for non-classically simulable initial states/measurements
. we would need to run the VQA on the quantum computer”
@/ @O ? i
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Classically simulating provably BP free losses

A’-}call from a couple of slides back that we can: \

Take 0 = };, c; P;, and define as B, the subspace associated to each P, under the adjoint action of U(8).
We have b) _j_' =

to(p,0) = X, calpa, P2(0))
P,0) | W
where p; is the projection of p onto B;.

The loss is the sum of the inner products in

%ch subspace!

So to simulate this loss we just need to compute a basis of B, and project p; onto that basis.

If we do not have a classical representation of p; then we can do this on a quantum computer.

& crucially, for provably BP free architectures live in polynomlal subspaces... so this only takes a polynomial number of
@ / mgg@urements.... i.e. the problem is in CSIM .
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Classically simulating provably BP free losses

If we do a case-by-case analysis of BP-free architectures/methods used in the literature, we can see that:

Claim 2: Problems in known polynomial subspaces are classically
simulable (potentially requiring data from a quantum computer).

‘ Problem instance C based on l Tomographic procedure for p | Simulation algorithm based on l
Shallow hardware efficient ansatz Pauli classical shadows [94] Light-cone sim. reduced U(8)
Generic shallow locally circuits Pauli classical shadows Pauli Propagation [79]
Quantum convolutional neural network” Pauli classical shadows Pauli Propagation
U(1)-equivariant Computational basis measurement Givens Rotations [110]
Sn-equivariant Permutation invariant shadows [111] g-sim [112]
Matchgate circuit Expectation value of Pauli operators g-sim
Small angle initialization Pauli measurements Tensor Networks [82], Pauli Prop. [80]
Small Lie algebra g Expectation value of algebra elements g-sim
k

Punchline: In none of the standard problem instances with provable absence of barren plateaus does the parametrized
quantum circuit need to be implemented on a quantum computer in order to estimate the loss in polynomial time.

/@O O
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Where does this leave us?

This means a better
understanding + new

. opportunities for the field!
Thi s e 7 Stages of Grief =
wrong. -
=
' D <
»
ﬁ A (» ‘.
‘ Reconstruction
Pain & - & Working So many new
Do 5 Guilt Anger & Through questions!
;‘:’anr to kiy ﬂ?urgammg The Upward @
i
elg? e Depression Turn eo@\‘e’b

I’'m gonna have to do fault- “eﬁe
tolerant now... <
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- -
no BPs = classically simulable

Caveats: Counterexample

Case-by-case, not absolute, argument
l.  We can construct examples of non-concentrated losses that are not classically simulable based on
cryptographic hardness, e.g., we smuggle in the discrete logarithm problem
Il. These examples do not resemble current mainstream variational quantum algorithms.

lll. Break assumption that comparing objects in exponentially large spaces leads to concentrated
expectation values as the circuits are structured

On the relation between trainability and dequantization of variational quantum learning models

Elies Gil-Fuster,"? Casper Gyurik,’ Adridn Pérez-Salinas,>* and Vedran Dunjko®>
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- -
no BPs = classically simulable

Caveats: Counterexample

Case-by-case, not absolute, argument

l.  We can construct examples of non-concentrated losses that are not classically simulable based on
cryptographic hardness, e.g., we smuggle in the discrete logarithm problem

Il. These examples do not resemble current mainstream variational quantum algorithms.

lll. Break assumption that comparing objects in exponentially large spaces leads to concentrated
expectation values as the circuits are structured

In its current form | do not find this caveat so interesting... but

/OO
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Caveats: Special initializations

Both barren plateaus and (in places) our notion of simulability are average case notions
A barren plateaus can have substantial gradients in exp. small subregion
In some cases, simulation might also not be possible in an exp. small subregion

Potential offered by warm starts?

A unifying account of warm start guarantees for patches of quantum landscapes

Hela Mhiri,"?:* Ricard Puig,'** Sacha Lerch,! Manuel S. Rudolph,!
Thiparat Chotibut,® Supanut Thanasilp,’*3 and Zoé Holmes'

! Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
2 Laboratoire d’Informatique de Paris 6, CNRS, Sorbonne Universite, 4 Place Jussiew, 75005 Paris, France
3 Chula Intelligent and Complex Systems, Department of Physics,

Faculty of Science, Chulalongkorn University, Bangkok, Thailand, 10330
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A unifying account of warm start guarantees for patches of quantum landscapes

Hela Mbhiri,'? * Ricard Puig,' * Sacha Lerch,! Manuel 5. Rudolph,’
Thiparat Chotibut,® Supanut Thanasilp,? and Zoé Holmes!
nstitute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
? Laboratoire d'Informatique de Paris 6, CNRS, Sorbenne Univ . 4 Place Jussiew, 75005 Paris, France
3 Chula Intelligent and Complex Syst Department of Physics,
Faculty of Science, Chulalongkorn University, Bangkok, Thailand, 10350

Caveats: Special initializations

a)

P

Second order derivative ££2} (@) (-- O(exp(—n))

]

Loss landscape L£(8)

- —

Patch size r /—-——-—*——-

But how can we find

parameters to
initialize here?

b)

. Overall Flat Region
Global Region Arbitrary region
| minimum : around identity (with large second derivative)
o 0 o] 6
Patch size 7
" L ]
= | € - re ?
i 1€0(l/poly(n)) ' € Prnl <5 < Fhal o
! =Thm.1 : ! (6] ) : ® Prior BP
: ; : : = Prop.1 Varg[L(8)] € O(exp(—n :

C/m®O
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If we initialize in an\
arbi ion with
gradients...

and the probability of
gradients on the full
landscape is exp
small...

what are the odds of
a trajectory to a good

solution?
\ J
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Caveats: Special initializations

Warm starts are ‘consistent’ with our guarantees.... i.e., these cases are also technically in CSIM

A unifying account of warm start guarantees for patches of quantum landscapes

Hela Mhiri,%'% " Ricard Puig,''* Sacha Lerch,’ Manuel S. Rudolph,!
Thiparat Chotibut,® Supanut Thanasilp,!® and Zoé Holmes'

A

! Institute of Physics, Eeole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Swilzerland
? Laboratoire d'Informatique de Paris 6, CNRS, Sorbonne Universite, 4 Place Jussieu, 75005 Paris, France
3 Chula Intelligent and Complex Systems, Department of Physics,

Faculty of Science, Chulalongkorn University, Bangkok, Thailand, 10330

Efficient quantum-enhanced classical simulation for patches of quantum landscapes

Sacha Lerch,!'* Ricard Puig,'** Manuel S. Rudolph,!:*
Armando Angrisani,! Tyson Jones,! M. Cerezo,?3 Supanut Thanasilp,"* and Zoé Holmes!

Can prove absence of
barren plateau guarantees

Can classically
surrogate those

N

regions using
hardware data

But they push beyond the spirit of ‘classically simulable after collecting data from quantym device’ because they

can require significant quantum resources in the data collection phase....

C/mO®O
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Caveats: not a strict dequantization!

The can still be to collect data! (If initial state/measurement is quantum or if
using a warm start in a high entanglement / high magic region of the landscape)

But it is used non-adaptively to create a surrogate which is then used for training

In some cases all you need to do is collect a simple classical shadow... in which case you might not even need
a universal quantum computer!

/OO

Pirsa: 25030071 Page 34/38



Caveats: not a strict dequantization!

In some cases all you need to do is collect a simple classical shadow... in which case you might not even need a

universal guantum computer!

Pirsa: 25030071

Quantum Convolutional Neural Networks are (Effectively) Classically Simulable

Pablo Bermejo,"" %% Paolo Braccia,* Manuel S. Rudolph,® Zoé Holmes,” Lukasz Cincio,* and M. Cerezo' *
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a) 15 512 qubit classical simulation
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Caveats: not a strict dequantization!

But in other cases (e.g. warm starts away from Clifford / low entanglement circuits)...

i.  Complex circuits may still need to be run on hardware N
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Caveats: Who cares about proofs

We rely on proofs of absence of BPs.
Could heuristically find large gradients but no identifiable poly-subspace?

Analogous to classical case?

Remember precision is much more
expensive than classically

& The fact classical ML is so successful
means we have a high bar to beat.
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Conclusions

Claim 0: BPs = Curse of dimensionality.

Claim 1: Provably barren plateau-free architectures live in
classically identifiable polynomial subspaces.

Claim 2: Problems in known polynomial subspaces are classically

simulable (potentially requiring data from a quantum computer).

Lots of caveats / future
opportunities
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