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Exogenization rule in classical causal models
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Exogenization rule does not hold quantumly
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Wolfe et al, Phys. Rev. X 11, 021043 (2021)
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Observational
dominance order
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For general mDAGs

Observational Structural
dominance of ¢> dominance of
mDAGs <:| mDAGs

7
G zobs G G zstruct G'

In particular, observational equivalence does not
imply equivalence of mDAGs
Different mDAGs can be observationally equivalent
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Observational order of
2-node mDAGs

Saturating

Factorizing @ @
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O&D dominance order of
3-node mDAGs
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Some dominance-proving rules
and relations among them

Structural Dominance Rule HLP Edge-Adding Rule
(SD) - Lemma 3 (HLP) - Proposition 4

Strong Facet-Merging Rule
(Strong FM) - Proposition 8

Moderate Facet-Merging Rule
(Moderate FM) - Proposition 7

Weak Facet-Merging Rule
(Weak FM) - Proposition 5
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Some nondominance-proving
rules and relations among them

Comparison of Unrealizable Supports (Supps) - Section 5.2

Lemma 7

Comparison of
e separation relations
(e-sep) - Section 5.1.3

Lemma 8

Y

Comparison of
densely connected
pairs of nodes

(DC) - Section 5.1.4

Lemma, / \emma 5

(skel) -

Comparison of
skeletons
Section 5.1.1

Comparison of
d-separation relations
(d-sep) - Section 5.1.2
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Lemma 9

Directed-edge-free rule
(DEF) - Section 5.1.5
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Structural dominance rule

Observational
dominance of
mMDAGs

G>,.G

(=

Structural
dominance of
mDAGs
G >

—struct

GI

Follows from fact that presence of a directed edge or face includes

possibility of it not being used.

If one mDAGs is higher in the structural order than another, it can
observationally realize all the distributions of the other
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Structural dominance order of

3-node mDAGs

72 mDAGs
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HLP Edge-adding rule

Proposition 4 (HLP Edge-Adding Rule (HLP)).
Let & = {D,B} be an mDAG, and let x and y be
two of its nodes. Let &' be the mDAG obtained from
® by adding a directed edge x — y.

Suppose that:

1. pap(z) € pap(y),

2. Whenever x € B for a facet B € B, then also
y € B.

In this case, & observationally dominates &' ie.,

G>6.

Henson,.Lal and Pusey, New Journal of Physics 16, 113043 (2014)
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HLP Edge-adding rule

Proposition 4 (HLP Edge-Adding Rule (HLP)).
Let & = {D,B} be an mDAG, and let x and y be
two of its nodes. Let &' be the mDAG obtained from
& by adding a directed edge x — y.

Suppose that:

1. pap(z) € pap(y),

2. Whenever x € B for a facet B € B, then also
Yy € B.

In this case, & observationally dominates &' ie.,
G>6.

Note that, since ®' structurally dominates &, by
Lemma 3 we know that &' observationally dominates
B, i.e., 6 > 6. Therefore, & and & are observation-
ally equivalent, i.e., & = &'
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Weak facet-merging rule

Proposition 5 (Weak Facet-Merging (Weak FM)).
Let & = {D, B} be an mDAG whose simplicial com-
plex B contains two disjoint facets C' and D. Let &'
be the mDAG obtained by starting from & and adding
a facet B = C U D and all of the faces contained in
B to its simplicial complez.

Suppose that:

1. pap(C) U C < pap(d) for each d € D,

2. For every c € C, C 1is the only facet that contains
c

In this case, & observationally dominates &', i.e.,
G>6.
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Relations among

nondominance-proving rules

Comparison of Unrealizable Supports (Supps) - Section 5.2

Lemma 7

Comparison of
e separation relations
(e-sep) - Section 5.1.3

Lemma 8

Y

Comparison of
densely connected
pairs of nodes

(DC) - Section 5.1.4

Lemma, / \emma 5

(skel) -

Comparison of
skeletons
Section 5.1.1

Comparison of
d-separation relations
(d-sep) - Section 5.1.2
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Lemma 9

Directed-edge-free rule
(DEF) - Section 5.1.5
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Comparison of d-separation relations rule

Proposition 10 (Comparison of d-separation re-
lations). Let & and &' be two mDAGs such that
nodes(®) = nodes(&'). If there is a d-separation
relation that is presented by & but not by &', then &
does not observationally dominate &', i.e., & # &'

O\O
W %obs
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Extension of d-separation theorem to
latent-permitting causal models:

Consider a latent-permitting causal structure G and three disjoint subsets of
observed variables X, Y and Z.

Soundness
X1,Y|ZinG = VPeCompg:X_LY|ZinP

Completeness
VPECompG:XJ_Y|ZinP — XJ_lez in G
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X LY|GA
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IC* algorithm and PC algorithm

Set of conditional Find latent-permitting DAGs
independence :> that have the right d-separation
relations on relations, but these DAGs might
observed variables still fail to be compatible with
the full distribution

Example: Cl relations of quantum-realizable Bell correlations
yield classical Bell model
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Relations among

nondominance-proving rules

Comparison of Unrealizable Supports (Supps) - Section 5.2

Lemma 7

Comparison of
e separation relations
(e-sep) - Section 5.1.3

Lemma 8

Y

Comparison of
densely connected
pairs of nodes

(DC) - Section 5.1.4

Lemma, / \emma 5

(skel) -

Comparison of
skeletons
Section 5.1.1

Comparison of
d-separation relations
(d-sep) - Section 5.1.2
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Lemma 9

Directed-edge-free rule
(DEF) - Section 5.1.5
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Comparison of skeletons rule

Definition 13 (Skeleton). Let & = (D,B) be an
mDAG. We define the skeleton of & by the undirected
graph with the same nodes as D and with an edge be-
tween nodes u and w whenever there is a directed edge
between them in D or when u,w € B for some B € B.

Proposition 9. (Comparison of skeletons) Let &
and & be two mDAGs such that nodes(®) =
nodes(®'). If there exist nodes =,y € nodes(®) such
that the undirected edge between x and y is present in
the skeleton of &' but not in the skeleton of &, then & G'
does not observationally dominate &', i.e., & # &' .

PR%

0 63 ]

R.J. Evans: Graphs for Margins of Bayesian Networks (2016)
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Recall: for directed-edge-free mDAGs

Observational
dominance of
mDAGs

G>,.G

Observational
nondominance of
mMDAGS

G # obs G

—

=

Structural
dominance of
mDAGs
G >

—struct

GI

Structural
nondominance of
mDAGSs

G }"struct G’
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@ 0 @ Compatible set does not include:

PS%e = w[000] + (1 —w)[111]  where w > 0

OO

@ Proof: The marginals of the target state are:
PSE" = P§a = PEE = 3100] + [11]

Papc = Z PanePpiorPeraPaPaoPr
AQT But then:

Pap = P P PAPqP
AB é AlnePpjarPaPoPr PAC:ZPAMQPCMFPAPQPF

Require: P, 0 =440 AQr

Ppira =9dB,0 = (Z5A,QPQ) (ZPCMFPAPI‘)
Q AT

Pa = w[0] + (1 — w)[1]

So that Pap = (Z 5A,Q5B,QPQ) ZPA ZPF
Q L r

= w[00] 4+ (1 — w)[11]
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Unrealizable supports: Unrealizable supports:

none {{07 070}7{17171}}
{{1,0,0},{0,1,0},{0,0,1}}
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2-node mDAGs
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