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Abstract:

Various models of physics beyond the Standard Model predict the existence of ultralight bosons. These particles can be
produced through superradiant instabilities, which create boson clouds around rotating black holes, forming so-called
"gravitational atoms". In this talk, | review a series of papers that study the interaction between a gravitational atom and a
binary companion. The companion can induce transitions between bound states of the cloud (resonances), as well as transitions
from bound to unbound states (ionization). These processes back-react on the binary’s dynamics and leave characteristic
imprints on the emitted gravitational waves (GWSs), providing direct information about the mass of the boson and the state of
the cloud. However, some of the resonances may destroy the cloud before the binary enters the frequency band of future
gravitational wave detectors. This destruction leaves a mark on the binary’s eccentricity and inclination, which can be identified
through a statistical analysis of a population of binary black holes.
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Earlier works by: D. Baumann, H.S.Chia, R.Porto, J.Stout

- 1804.03208 “Probing ultralight bosons with binary black holes” (PRD)
- 1912.04932 “Gravitational collider physics” (PRD)

My works:

- 2112.14777 “lonization of gravitational atoms” (PRD)

+ 2206.01212 “Sharp signals of boson clouds in black hole binary inspirals” (PRL)

- 2305.15460 “Dynamical friction in gravitational atoms” (JCAP)

- 2403.03147 “Resonant history of gravitational atoms in black hole binaries” (PRD)
- 2407.12908 “Legacy of boson clouds on black hole binaries” (PRL)

Collaborators: D.Baumann, G.Bertone, J.Stout, T. Spieksma
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MOTIVATION

Standard

particle collider — high energy
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How do we explore the weak coupling frontier?
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MOTIVATION

Solutions to many BSM puzzles involve ultralight bosons.

- Strong CP. Why is fqcp SO small?

¥ [Peccei and Quinn '77: Wilczek '78; Weinberg '78; Kim '79; Zhitnitsky '80; Shifman, Vainshtein, Zakharov '80; Dine, Fischler, Srednicki '81]

- Dark Matter. What comprises 85% of matter in our universe?
[Preskill, Wise, Wilczek '83; Abhott and Sikivie '83; Dine and Fischler '83; Hu, Barkana, Gruzinov, '00]
- String Axiverse. Bosons from string compactifications?
[Arvanitaki, Dimopoulos, Dubovsky, Kaloper, March-Russell '09; Demirtas, Long, McAllister, Stillman "18]

- Hierarchy Problems. Why is the weak force so strong?

[Graham, Kaplan, Rajendran "15, "19; Hook "18; Arkani-Hamed, Cohen, et. al. "17; D’Agnolo and Teresi '21]

Weakly coupled fields, often with no abundance in the universe.
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ROTATING BLACK HOLES

Event horizon surrounded by the ergosphere:

goo < 0 = negative energy
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PENROSE PROCESS: STEALING ENERGY FROM ROTATING BLACK HOLES
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THE GRAVITATIONAL ATOM

A
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Gravitational fine structure constant: o = uM ~ O(0.1).

[Zeldovich '72; Starobinsky '73; Dolan '07; Arvanitaki et al. '09]
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THE SPECTRUM

Page 9/34
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How does a cloud affect a binary inspiral?

The binary can induce transitions between bound states (“resonances”) and
excite unbound states (“ionization”)...
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Perturbation with slowly increasing frequency:

*,w*))w

perturbation

Level mixing:
ngt
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RESONANCES

M 0.2

4 3
Resonance frequency:  Q, = ‘ifl ~ 10 mHz (10 MG) ( a )

[Baumann, Chia, Porto, Stout "18] 1
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i

LINEAR” LANDAU-ZENER TRANSITIONS

Q=const [T/2 V7
) == (i

Landau-Zener transition with parameter Z = 5?/€. Final population: e=272.
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[Baumann, Chia, Porto, Stout "19] 12
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FLOATING AND SINKING RESONANCES

[Baumann, Chia, Porto, Stout "19] 13
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|[ONIZATION

Orbital frequency above threshold to excite transitions to unbound states

[Baumann, Bertone, Stout, GMT '21] 14
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FERMI'S GOLDEN RULE

The transition rate (per unit energy) is given by Fermi’s Golden Rule:

dl' =dE [99]? §(E — E, — ¢Q)
N / L. ~

T
Level mixing E—E,&m) [Baumann, Bertone, Stout, GMT, '21] 19
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[ONIZATION POWER

Summing over all bound states gives the total ionization power:

M, -
Pion — 7 Zgﬂ |77(g)|2 Q(Eﬂg ))
£,m

[Baumann, Bertone, Stout, GMT, '21] 16
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[ONIZATION POWER
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[|211), @ = 0.2, Mc/M = 0.01, ¢ = 10~ 3] [Baumann, Bertone, Stout, GMT '21] 17
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FREQUENCY EVOLUTION

Kinks in the frequency evolution: signature of the cloud!

0.4 ! | |

— Vacuum
Counter-rotating

— Co-rotating
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t—to [yrs|

) o : o ) 18
(M = 104_-1-1.3, |211), initial: R, = 400M, M, /M = 1078, Mc/M = 10— 2] [Baumann, Bertone, Stout, GMT, '22]
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KINKS IN THE FREQUENCY

Kinks in the frequency evolution: signature of the cloud!
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[Baumann, Bertone, Stout, GMT, '22] 19
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lonization or dynamical friction?

47 M?
Ppe = Tp log(vptbmax)

[GMT, Spieksma, Bertone '23] 20
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THE RESONANT HISTORY

Bohr resonances and ionization: observable when R, ~ 10%M.

But fine and hyperfine resonances happen earlier (= 103M)!

So, when R, ~ 10°M...

..what is the state of the cloud?
..Is the cloud still there?
..what Is the binary configuration?

[GMT, Spieksma, Bertone '24] 21
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THE RESONANT HISTORY

H_YDCI‘ﬁIlC resonances

103
binary separation R./M

[GMT, Spieksma, Bertone '24] 22
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TIMESCALES

All fine and hyperfine resonances are floating and decaying.

£=2

Atfoat > tdecay No state change, only destruction or survival.

[GMT, Spieksma, Bertone '24] 23
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THE RESONANT HISTORY

Hyperﬁne resonances

103
binary separation R./M

[GMT, Spieksma, Bertone '24] 24
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i

LINEAR” LANDAU-ZENER TRANSITIONS

Q=const [T/2 V7
) == (i

Landau-Zener transition with parameter Z = 5?/. Final population: e=272.
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[Baumann, Chia, Porto, Stout "19] 25
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“NONLINEAR” LANDAU-ZENER TRANSITIONS

Landau-Zener transitions assume = Qaw.

In reality, there is backreaction:

d

E(Ebinary S5 Ecloud) — PGW

d

E(Lbinary I Lcloud) = TGW

[GMT, Spieksma, Bertone '24]

26
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“NONLINEAR” LANDAU-ZENER TRANSITIONS

Taking into account the backreaction (cloud + binary energy conserv.):

w/2 \/?
HD = ( / ) . W=7 — Blwfinal state|2

A —w/2 T

backreaction param.

Very complicated phenomenology!

Resonances can “start” and “break”.. But in a few words:

- weak resonances when binary and cloud are approx. counter-rotating;
- strong resonances otherwise.

[GMT, Spieksma, Bertone '24] 27
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THE RESONANT HISTORY

Hyperfine resonances
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[GMT, Spieksma, Bertone '24] 28
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TWO OUTCOMES

The cloud survives...
— Direct signatures via ionization and Bohr sinking resonances!

- Initial state unchanged (|211), |322), ...)
- Near-counter rotating (8 ~ ).

Otherwise, the cloud is destroyed...
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ECCENTRICITY AND INCLINATION

During the float, the eccentricity € and inclination 8 change dramatically.

180° 180°
Am/g=1 : Am/g=1/2

Fixed points at e ~ 0, 0.46, 0.58, 0.65, ...

[GMT, Spieksma, Bertone 241 3(

Pirsa: 25020044 Page 31/34



FINAL ECCENTRICITY AND INCLINATION

Final values of (g, 8) controlled by a single parameter: D o M.q '«aa.
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Statistical test could distinguish from astrophysical distributions of (g, ).

[GMT, Spieksma, Bertone '24] 31
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SUMMARY

- Resonances give peculiar GWs features and set the cloud’s state.

- lonization dominates dynamics and has sharp GWs features.

- Resonant history determines the observed configuration:

- possible states: |211), |322), ...
- near-counter-rotating inclination g8 ~ .

- The cloud can be destroyed, leaving a vacuum binary with:
*+ near-co-rotating inclination 8 ~ 0,
« eccentricity close to fixed points (partially washed away by GWSs).
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@ anxiv.org/pdf/2403.03147

As a concluding remark, we note that the results derived here and in Section 3 are specific
to resonances involving two states only. We have explicitly checked that this is the case for the
resonances discussed in the next sections, so we apply the results of Section 3 without further
modification.

5.2 Evolution from a |211) initial state

The |211) state is the fastest-growing superradiant mode and represents therefore a natural
assumption for the initial state of the cloud. The requirements that the superradiant amplification
takes place, and does so on timescales no longer than a Gyr, set a constraint on «:

M 1/9
002 ——— < 0.5. 5.3

(104M@) Sl ». G
Once grown, the cloud will decay in GWs with a rate roughly proportional to M2a!4, assuming
the scalar field is real. The resulting decay of M, is polynomial, rather than exponential in time;
as such, we will not impose a further sharp bound on a, and treat M./M as an additional free
parameter.

There are two possible hyperfine resonances, with the states |210) and |21-1). Following
the line of reasoning laid down in Section 5.1, we ignore the fact that the same resonances can
be triggered at multiple points if the orbit is eccentric. Both resonances are then mediated by
g = —2 and they are positioned at

=t to,_ g (O G N

211) = j210) T2 =83x10 (0.2) (0_5) , (5.4)
N —4 a —2/3

|211) 2= |21 -1) % = 5.2 x 10° (0‘1—2) (%) " (5.5)

where the value of the spin should be set equal to the threshold of superradiant instability of |211),
that is, @ ~ 4a/(1 + 4¢?). Both resonances become non-adiabatic in an interval 7 — §; < 8 < 7,
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