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Abstract:

In this talk, we develop a comprehensive framework for realizing anyon condensation of topological orders within the string-net
model by constructing a Hamiltonian that bridges the parent string-net model before and the child string-net model after anyon
condensation. Our approach classifies all possible types of bosonic anyon condensation in any parent string-net model and
identifies the basic degrees of freedom in the corresponding child models. Compared with the traditional UMTC perspective of
topological orders, our method offers a finer categorical description of anyon condensation at the microscopic level. We also
explicitly represent relevant UMTC categorical entities characterizing anyon condensation through our model-based physical
quantities, providing practical algorithms for calculating these categorical data.
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Fractional quantum Hall states

Magnetie field (T)

Very particular fractions

TOPOLOGICALLY ORDERED MATTER PHASES

Distinct FQHS share the same symmetry

I

Landau-Ginzburg symmetry breaking fails

Topological orders
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TOPOLOGICAL ORDERS IN 2D
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time

Non-Abelian anyons

Topological quantum computing
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Certain anyons may condense like usual bosons do in the Higgs mechanism

Let’s briefly review the Cooper pair condensation and Higgs boson condensation
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‘HIGGS MECHANISM: SUPERCONDUCTORS

Condense: Cooper pairs of electrons

w-v_,

Charged boson

Coherent State of Cooper Pairs
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HIGGS MECHANISM: ELECTROWEAK BREAKING \J

¢y + fﬁbz)
o + ipg

Higgs Boson: Complex doublet with the weak U(1)y X SU(2), symmetry---Four components! )

I
—
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HIGGS MECHANISM: SUPERCONDUCTORS

Pirsa: 25020042

Condense: Cooper pairs of electrons

w-v_,

Charged boson

Coherent State of Cooper Pairs

Gap: photons (gauge bosons) gapped (massive) by eating the Goldstone mode

Confinement: magnetic fluxes confined in Type-Il superconductors:

Superconductor

! — ——
—RA ety s _\* —
solenoid: N — :ﬂ fod solenoid

Flux tube

. Cooper Coherent State Aharonov-Bohm effect
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‘HIGGS MECHANISM: ELECTROWEAK BREAKING

Higgs Boson: Complex doublet with the weak U(1)y X SU(2), symmetry---Four components! ¢ = @1 jr iiz)
0 3
Condensation: One component of Higgs Boson condenses (unitary gauge) (Po) = ‘f;v, (1) = () = (P3) =0
i 2
Gap: W, Z° bosons “eat” Goldstone modes and are gapped (massive) Lymu = (au —Eg%“ca - g Bﬂ)qp
g 3 g’
- y=——=Wi ————=5
1 L 24 g2 24 g2
Splitting: e and v} split | £u= (7 &) Wa, () ol R
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|HIGGS MECHANISM: ELECTROWEAK BREAKING

Higgs Boson: Complex doublet with the weak U(1)y X SU(2), symmetry---Four components! ¢ = @1 jr ﬁz)
0 3
Condensation: One component of Higgs Boson condenses (unitary gauge) (Po) = ‘f;v, (1) = (P,) = (¢p3) =0

P 2
Gap: W, Z0 bosons “eat” Goldstone modes and are gapped (massive) Lymn = (aﬂ —%Wu“aa - g B‘u)qb
] b Zp = 29 2 W 2g 2 Bu
aa® - - i lg + ! + !
Splitting: eX and v} split | £, = (v eL)?V‘{fL% (2‘;) S S
Identification: e’ and e® combine as a Dirac fermion Lyurawa = € ($o + id3)er b L, =me]eg
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ANYON CONDENSATION VS BOSON CONDENSATION

Anyon Condensation:
Anyons of certain types are condensed

Child Topological Phase:
Ground States = Coherent states with condensed anyons

Splitting:

An anyon may split into different sectors
Identification:

Different sectors from different anyons may be identified
Confinement:

Certain sectors are confined in the child phase

Gapped Gauge field:
Certain input dof (gauge fields) are gapped in the child phase
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Analogy

Cooper-Pair/Higgs Boson Condensation
Vac = Coherent State of Cooper Pairs/Higgs bosons

e’ and vét splitting

el and e® combine as a Dirac fermion

Magnetic Fluxes Confinement

Photon, W, and Z become massive
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TRADITIONAL CATEGORICAL DESCRIPTION OF ANYON CONDENSATION

Parent Topological Order Unitary Modular Tensor Category (UMTC) C
Parent Anyon Type | Simple Objects | € Irr(C)
Twist-Free Commutative Separable Frobenius Algebra (CSFA)
Condensate . . .
Composite Object A = @condensed jJ In €
Child Topological Order Repe o (4)
Child Vacuum A = 1,4, trivial representation of A

Irreducible representations of A

ChildianyonTypesd exia braiding trivially with A

Cons: Only Describe relationships of topological properties of parent and child topological orders!
Ignore fundamental physical details, e.g., basic degrees of freedom of the underlying system!

Need basic field configurations! Need Hilbert space! Need Hamiltonian! Need a model!
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ANYON CONDENSATION: NEED A MODEL

Certain types of anyons in the parent phase are condensed:

Hpsrany =  Hparent — A € [0, +00): phase transition parameter.

» Projector =|Sum of Condensed Anyon Creation Operators

Child phase:

— Hilbert Space: Hchila = PHparent

— Hamiltonian: HChild = PHParentP

— Ground States: |®)chilg = P|P)parent= Coherent states with arbitrarily many condensed anyon types.

— Excited States: |Y)chiila = Pl¥)parent
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THE STRING-NET MODEL, BUT OUR VERSION

Edges: Carrying Basic Dofs
Dofs € Simple objects of F

Vertices: A4, Operators
Detecting Charge Existence

Plaquettes: Bp Operators
Detecting Flux Existence

Original String-Net Model; Input Fusion Category F

H=— 2 Ay — Z Bp Sum of Commuting Projectors!
Exactly Solvable!

Vertices V Plaquettes P
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THE STRING-NET MODEL, BUT OUR VERSION

Edges: Carrying Basic Dofs
Dofs € Simple objects of F

Cannot fully describe charge excitations!

Vertices: 4, Operators
Detecting Charge Existence

Plaquettes: Bp Operators
Detecting Flux Existence

Original String-Net Model; Input Fusion Category F

H=— z Ay — Z Bp Sum of Commuting Projectors!
Exactly Solvable!

Vertices V Plaquettes P
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THE STRING-NET MODEL, BUT OUR VERSION

Edges: Carrying Basic Dofs
Dofs € Simple objects of F

- Tails: Carrying Basic Dofsl as Charges
How charges and gauge fields couple

Vertices: In Hilbert space, Ay, = 1 Always Satisfied

Plaquettes: Bp Operators
Detecting Flux Existence

String-Net Model, Our Version; Input Fusion Category F

H=— z Ay — Z Bp Sum of Commuting Projectors!
Exactly Solvable!

Vertices V Plaquettes P
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THE STRING-NET MODEL, BUT OUR VERSION

Edges: Carrying Basic Dofs
Dofs € Simple objects of F

- Tails: Carrying Basic Dofs. as Charges
How charges and gauge fields couple

Vertices: In Hilbert space, Ay, = 1 Always Satisfied

Plaquettes: Bp Operators
Detecting Flux Existence

String-Net Model, Our Version; Input Fusion Category F

_ Sumof Commuting Projectors!
H = +ﬂv = E Bp 6pof on Tail in PA fE v § lg b ],
Vertices V Plaquettes P 0 AL UL Lo
Qp Operator
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THE STRING-NET MODEL: EXCITATIONS

Ground States: Qp = 1 for all P

Excited States: Qp = 0 for certain P

Anyon | € Irr(Z(T)) in P, where Qp = 0.

Creating anyons by WE];pq

Represent anyons as dyons

v Jirq
W E

| Edge E
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THE STRING-NET MODEL: EXCITATIONS

Ground States: Qp = 1 for all P

Excited States: Qp = 0 for certain P

Anyon | € Irr(Z(SE')) in P, where Qp = 0.

Creating anyons by WE];pq Dyon (J, q)

Coefficients
Represent anyons as dyons

Manifest Internal Spaces 1%, é Pq

| Edge E
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THE STRING-NET MODEL: EXCITATIONS Pt e N

* Input UFC Fibo: Irr = {1, 7}
* Anyon Types: Irr(Z (Fibo)):
Ground States: Qp = 1 for all P 11, 17, 71, 1217

Excited States: Qp = 0 for certain P * Dyon Type:

\ (L iyl &) (e w) (. 1) (Tf,’f)/

Anyon | € Irr(Z(T)) in P, where Qp = 0.

Creating anyons by WE];pq Dyon (J,q)
Coefficients

Represent anyons as dyons

Manifest Internal Spaces 1%, é Pq

| Edge E
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ANYON CONDENSATION: IN THE STRING-NET MODEL

Certain dyon types in the parent model are condensed:

0 Local Projector Py
H_rp = H:p —A Z z Z s Vl/JY P4

Edges E| Condensed p,q
nyon Type]

P Project out certain basic degrees of freedom!

HT ={a € rr(F)} > Hy = PeHT c H]

Child Model Input Data: Subcategory & € F
HS = {r e rr(S)}

Question: How to calculate néq? What is the child input subcategory S2
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ANYON CONDENSATION: IN THE STRING-NET MODEL

Certain dyon types in the parent model are condensed:

x) Local Projector Pg
Hj:' = Hj;' —A z z Z S Vl/JY 1]

Edges E| Condensed p,q
nyon Type]

Pg: Project out certain basic degrees of freedom!

Dof € Irr(F) we——)- D of € Irr(S)
HT ={a € rr(F)} > HY = PeHT c H]

Child Model Input Data: Subcategory § € F In general, Irr(S) & Irr(F)
HS = {r e Iri(S)}

Question: How to calculate néq’q’ What is the child input subcategory S2
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EASE WITH FLUXON CONDENSATION

[ e

Choosing Full Subcategory: Irr(§) c Irr(F) Example: Fibonacci UFC
| I I B
e 1 j’h: »'J = Eem(c)l - .,-Jx Irr(Fibo) = {1, 7}
Ny Sol

w;: Irr(F) - C
Solve Linear Equations (# unknowns = # eqs):
n}le(jE) = 5)'56]1"1"(6)

Condensed
Anyon Types J

Condensing Anyons with ﬂf}l # 0!
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EASE WITH FLUXON CONDENSATION

[ e

Choosing Full Subcategory: Irr(S) c Irr(F)
1

- o - -
g PR L E e 3 LR A e X

Pg | ":t J =5jEEIrr(C)T - J/

- : L. -
AR e L i L e e B e

i .

w;: Irr(F) - C
Solve Linear Equations (# unknowns = # eqs):
n}le(jE) = 5)'56]1"1"(6)
Condensed

Anyon Types J

Condensing Anyons with ﬂf}l # 0!
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Example: Fibonacci UFC

Irr(Fibo) = {1, 1}

Full Subcategory: Irr(S) = {1}
- ™ I\ ] - _/’Lm_ _.-*'J'“‘\

Pe] F | =68 | F | rrvia
............ “«.\i,.-’ \_T.t' .

Fluxons: (11, 1), (zT, 1)

wil(1) = wi(D) = 1,

wgr(D) =1, wgr(r) =—¢72

Condensing
Anyon 77!

1 = =
Pg = ) (WEH + ¢2W§T) =06j.1

¢2
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DIFFICULTIES WITH DYON CONDENSATION

There does exist non-fluxon condensation in the model!

They pose significant challenges:

Difficult to identify the child model’s degrees of freedom!

SO I Ved By D ua I i ty M a p S ! . Previously Unknown!

Non-Fluxon E
Condensation

GPT

Parent Model ——  Child Model

Represents

Difficult to solve projector Pg!

In general, Irr($) & Irr(F)!

o
Select a Certain

Parent Input Subcategory Child Input
UFC F UpPs 8. F

P E Our I FPseudonatural
Recipe Transformation
Equivalent Equivalent Equivalent Equivalent
_— _ =
Parent Model Fliscoh Child Model Input UFC ' Seclect a Full  Child Input

Condensation P
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Subcategory ypc 8’ ¢ ¥

Degenerate
Quadratic
Multi-Variable
Matrix Equation

f 3

P¢ = Pg
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DUALITY MAPS: OVERVIEW

String-net Model Equivalent Model

Input UFC F Input UFC F’
Drinfeld\ Ane Center
Center UMTC ¢ C=2Z(F)=2(F)
C = Z(F)

Topological
Properties

Topological Order
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DUALITY MAPS: FROBENIUS ALGEBRA

Z(F) = Z(F') < F' =Bimods(A) S F

Etingof, et al. Tensor categories. Vol. 205. American Mathematical Soc., 2015.

Frobenius algebra: A = (L4, f):

L, ={ayla €lrr(F),1 < a < nd'},

Pirsa: 25020042
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DUALITY MAPS: FROBENIUS ALGEBRA

Z(F) = Z(F') < F' =Bimods(A)SF

Etingof, et al. Tensor categories. Vol. 205. American Mathematical Soc., 2015.

Example: Fibonacci UFC:

Frobenius algebra: A = (L4, f):
Lc/-'l = {11 T}J

L, ={ayla €lrr(F),1 < a < nd'},

fin = fhie=fin=firn =1

3

fror =@ 4
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DUALITY MAPS: BIMODULES

Bimodules: M = (Ly, P): Example: Fibonacci UFC:

— {y. <i<nM : :
Ly = {x|x € Irr(F), 1 < i < ny'}, Two simple Bimodules over A:

P:L% @@Ly ®Lr @ Ly~ C.  Trivial Bimodule M;:

LM1 — {11 T}

* Nontrivial Bimodule M.:
b LM-,, = {1,74,75}
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DUALITY MAPS: BIMODULES
Bimodules: M = (L, P):
Ly = {x;|x € Irr(F),1 <i <nl},

Pl Q@Ly ®Lr ® Ly — C.

Xiuyj

Pirsa: 25020042

Example: Fibonacci UFC:
Two simple Bimodules over A:

* Trivial Bimodule M;:
LM1 — {11 T}

* Nontrivial Bimodule M.:
Ly, = {1,71,72}

{M;, M} forms the bimodule category
of A=1P7
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DUALITY MAPS: CONSTRUCTION AND ENLARGEMENT

Yia bg

D Z Z Z
; a.,bg ’
M :> P\[ ! uyj a (7

anbs€Lly, xiy;eM uclg

Dual Model Original Model
M € Bimodz(A)

Dual Model

Internal Charges
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DUALITY MAPS: CONSTRUCTION AND ENLARGEMENT

i % Z Z Z [Par]e; :)z;j = &

anbs€Lly xiy;eM ucly

Dual Model
M € Bimodz(A)

Dual Model

Enlarging Hilbert space!

i

A acts on p; and p; differently

Pirsa: 25020042

Yis bg

Original Model

Internal Charges

l

4—‘ Reflect A actions
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DUALITY MAPS: CONSTRUCTION AND ENLARGEMENT

Yik bg
D &l
¥
TS S S T
anbs€L, x;y;EM u€Lg J:
Dual Model Original Model

M € Bimodz(A)

Dual Model

Internal Charges

Enlarging Hilbert space!

i

A acts on p; and p; differently

Pirsa: 25020042

l

4—‘ Reflect A actions

Example: Fibonacci UFC:

LM1 - {11 T}r

!

Tail Dof Enlarging: {M,, M} — {1,174, 7,}
T 1 \/(,T) 1 L \/& T2
- 69k Gl

™ D

Ly, = {1,71,72}

Orthonormality:
(M{|M,) = 0in dual model
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DYON CONDENSATION: FIBONACCI EXAMPLE

Duality Map

Dual Model > Original Model

Fluxon Creation Operator

WEMTMT;MlMl 5 W;T 1y (;’/;WETT 1T 4 ;)C W;T T ;ﬁ: WEH e
1 p 2 1111_|_W1:1-11_|_
P = ¢2 e (WMlMl ;M1 My + ¢2 Mer M1M1) E= d2(Pp2 + 1) (p=W,
4\-/_WT‘E Tl V_WTT 1T | \/gWErr,rr)
Condensed Fluxon: (M M;; M;) ’ 7 _ondensed Sector: —(T‘L’ 1) + \/_(T’E T)
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DYON CONDENSATION: FIBONACCI EXAMPLE

Duality Map

Dual Model = Original Model

Fluxon Creation Operator
MiMy;Mq M4

45 45 V8

WE ¢4 W;T 11 ¢4 WET'[ 11’ ¢4 WE"[T 'rl ¢4 WErr TT
1 p 2 1111_|_W1:1-11_|_
Py = ¢2 — (WM1M1 :My My 4 ¢ WMIMT MlMl) E — —ti)z(qbz s 1) (‘?5
‘V_W” Tl J{/_WTT 1T + \EWE”’”)
Condensed Fluxon: (M M;; M;) o -+ -ondensed Sector: —(T‘L’ 1) + \/_(T’E T)

Child Input UFC: Irr(S) = {1}
Trivial Subcategory of Fibo

1 Child Input UFC: Irr(§") = {A =1 D 1}
Another Trivial Subcategory
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PSEUDONATURAL TRANSFORMATION

A finer framework of anyon condensation than the UMTC-CSFA description

Gapping Certain basic degrees of freedom (gauge field) of the topological system

Subcategory Injection

F - S
Pesudonatural Transformation |

Full Subcategory Injection
Bimodg (A) - s/
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FROM GAPPING BASIC DEGREES OF FREEDOM TO CONDENSED ANYONS

Diagonalization
Py = Z Zd W]pq EEEeTe————— P, = Z ngi

Condensed p,g = i Condensed
Anyon Type J e ZRJ‘U 2 Sectors J;
w/i = Z uf uf WP
p.q
J;: Condensed sectors Absorbed by projector: PEWE’(" = WEjiPE = Pg
: : N ki d
Commutative Separable Frobenius Algebra A: Represented by {I/VEJr ) WiWy’ s " ﬁ"K Wg  VI,Kjely

Child basic dof: Invariant under condensed sectors WE]ilr eElrr(S))=1r) | A= {WE]i}: Full Center of S

Child Anyon Type: Jchilq € Repz o(4) WE]cmla _ PEWE]ParemPE
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FROM GAPPING BASIC DEGREES OF FREEDOM TO CONDENSED ANYONS

Diagonalization
P = Z Zd W]pq e P = Z Wb!i

Condensed p,g = : Condensed
Anyon Type J L ZRJ‘U 2 Sectors J;
w/i = Z uf uf WP
p.q
Ji: Condensed sectors Absorbed by projector: PEWE’(" = WEjiPE = Pg

Commutative Separable Frobenius Algebra A: Represented by {I/V‘,;r i} WeWg' = Y d;
fpchy

Child basic dof: Invariant under condensed sectors WE]ilr Elrr(8))=|r) | A= {WE]i}: Full Center of S
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FROM GAPPING BASIC DEGREES OF FREEDOM TO CONDENSED ANYONS

Diagonalization
P = Z Zd W]pq e [, = Z Wb!i

Condensed p,g - i Condensed
Anyon Type J L ZRJ‘U 2 Sectors J;
w/i = Z uf uf WP
p.q
Ji: Condensed sectors Absorbed by projector: PEWE’(" — WEjiPE = Pg
- - . Ty vk A on Wb v K
Commutative Separable Frobenius Algebra A: Represented by {WE } WgWg’ = Y L K, WE Ji, Kj € Lg

Ipely

Child basic dof: Invariant under condensed sectors WE}ilr eElrr(S))=1r) | A= {WE]!'}; Full Center of S

Child Anyon Type: Jchilqg € Repz o(4) WEJcmla _ PEWE]ParentPE
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THANK YOU FOR YOUR ATTENTION! ‘



