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Abstract:

Causal set theory is an approach to quantum gravity that proposes that
spacetime is fundamentally discrete and the causal relations among the
discrete elements play a prominent role in the physics. Progress has
been made in recognizing and understanding how some continuumlike
features can emerge from causal sets at macroscopic scales, i.e., when
the number of elements is large. An important result in this context is
that a causal set is well approximated by a continuum spacetime if there

is @ number-volume correspondence between the causal set and spacetime.

This occurs when the number of elements within an arbitrary spacetime
region is proportional to its volume. Such a correspondence is known to
be best achieved when the number of causal set elements is randomly
distributed according to the Poisson distribution. | will discuss the
Poisson distribution and the statistical fluctuations it induces in the
causal set-continuum correspondence, highlighting why it is important
and interesting. | will also discuss new tools and techniques that
facilitate such analyses.
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Questions in Quantum Gravity

What is the microscopic structure of spacetime that is
more fundamental than the continuous Lorentzian manifold

and metric of general relativity?

e What is the resolution of the UV divergences in quantum
field theory and spacetime singularities in GR?

e What happens in the early universe?
e What are the microstates of a black hole?
e How do matter fields backreact on spacetime?

e How do we think about superpositions of spacetimes or
causal structures?

e How do we path integrate over Lorentzian geometries?
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Causal Set Theory

Bombelli, Lee, Meyer, Sorkin, 1987, Space-Time as a Causal Set, PRL. 59, 521.

® A causal set is a fundamentally discrete spacetime
4

A

e.g./ with causal relations among some of its elements.

_ A locally finite partially ordered set. The set € (of spacetime

5' * .-4 N\ elements) and ordering relation < (causal precedence) satisfy:
@

Reflexivity: forall x€ €, x=<x
Antisymmetry: forallx,y € €,x <y <x implies x=y
Transitivity: forall x,y,z € ¢, x <y <z implies x <z

Local Finiteness: for all x,y € €, | I(x,y)| < o0, where| - | denotes cardinality
and I(x, y) is the causal interval defined by I(x,y) .= {z € € |x <z <y}

We know that we can recover all essential aspects of a continuous spacetime

from a causal set.

Zeeman, Causality Implies the Lorentz Group, J. Math. Phys. 5: 490-493 (1964). Hawking, King and McCarthy, A New Topology
for Curved Space-Time which Incorporates the Causal, Differential and Conformal Structures, J. Math. Phys. 17: 174 (1978).
Malament, The Class of Continuous Timelike Curves Determines the Topology of Space-time, J. Math. Phys 18: 1329 (1977)
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Manifoldlike Causal Sets

What does it mean for a causal set & to be well approximated
by a spacetime (A, g)?

e Causal Relations % should be embeddable in .Z such
that the elements have the same causal relations as the
corresponding points in .Z/: Sample points from ./

eVolumes The number of elements N within any
arbitrary region with volume V should be statistically
proportional to V (number-volume correspondence):
Poisson distribution (arxiv:1403.6429)

eScale True at scales larger than the discreteness scale.
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Manifoldlike Causal Sets

The best number-volume correspondence is achieved

by the Poisson distribution:

N
(p]:,) -

PN(V) =

How? Place points at random in .# using a
Poisson process: divide spacetime into small
subregions with volume dV and place at most one

point in each subregion, with probability pdV.

Then, Py(V) = (Vﬁv) (pav)" (1 = pdv)Vav-N

which becomes (1) when dV — 0

(Poisson limit theorem) Poisson Sprinkling

No preferred frame (arXiv:gr-qc/0605006, arXiv:1909.06070)

Pirsa: 25020040 Page 6/16



Pirsa: 25020040

Poisson Distribution

The best number-volume correspondence is achieved

by the Poisson distribution:

N
GV v

PN(V) =

N!

Given a function f : Sp[.#] — C, we are interested in (f) and Af = 1/ {f?) — (f)?

* How close is the correspondence between some continuum quantities (e.g. the
d’Alembertian and gravitational action) and their discrete analogues in the

causal set (arXiv:gr-qc/0703099, arXiv:1001.2725)

» Deviations can be a source of new physics: e.g. the Everpresent A cosmological

model where A ~ v ~ 107122 (5rXiv:astro-ph/0209274, arXiv:2304.03819)
\%4
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NOtation Py(V) = (pA‘;)Ne—pV

The Cardinality Indicator function {; (i > () for a causal set & and region %

is defined as ((Z) = dNym,,; which evaluates to 1if there are i elements of €

in &, and evaluates to 0 otherwise. Note that <5Num@,i) =P(Vg)

It is useful to introduce a special variant when the region is a causal diamond

I(x,y) = 7~ (x)n 7 ()

1 iflx,y) # O,
0 otherwise.

G, y) =0, §l(xy) where O, = {

xr

arXiv:2407.03395
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NOtation Pl = (pA‘;)Ne—pV

The Cardinality Indicator function {; (i > () for a causal set & and region %

is defined as ((Z) = dNym,,; which evaluates to 1if there are i elements of €

in &, and evaluates to 0 otherwise. Note that (6Nym,,..) = Pi(Va)

It is useful to introduce a special variant when the region is a causal diamond

I(x,y) = F~ ()N F(y): s

1 iflx,y) # @,
0 otherwise.

Gix,y)=0,, {(xy) where O,, = {

If a non-empty region &£ is split into n disjoint (possibly empty) subregions

n
K= |_| % ,, then we have the Disjoint Decomposition Property
a=1
n n
q(Ll)= T Iee
a=1 a, >0 a=1

a+...+a,=i arXiv:2407.03395
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NOtation Ptk | = (pA‘;)Ne—pV

The Cardinality Indicator function {; (i > () for a causal set & and region %

is defined as {(#) = dNym ,; Which evaluates to 1if there are i elements of €

in #, and evaluates to 0 otherwise. Note that (ONym,, ;) = Pi(Vg)

The Occupation Indicator function y (%)= Z (R) =

= 0 otherwise.

{1 if Numg > 0,

o0

) . SNum AR
2OR) =limy(AR,) = lim ) ———"“AV,
a—0 a—0 i1

AV, *
.- ONum g1
V(AR = a _ % AV, =) 6Dz —x)dV,

a—0 o €%

Note that (y(6%,)) = P\(Vsg ) = pdV, . Can use y(6X,) as an integration measure

| sonwems= 3
k74

ZEC

arXiv:2407.03395
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Correlations in (f) and Af = \/ (f2y — ()2

We generically need to compute correlations

<Ci1(x1= yl)' ' z:in(xm yn)X((SRxl)Z(‘SRy]) ' Z((SRIR)Z((SR},“))

This is easy to compute if the functions are uncorrelated

(G001 30+, (s Y)Y X BOR )X (BR, )Y+ (28R, )X (BR,)

HOR)) = P(Vsg) =pdV ({5 3)) = P(Viy )

y — ¥ Correlations
For non-overlapping regions: (y(6R, )---¥(6R, )) = (¥(6R,))---(X(6R,))

For coinciding points: (y(6%£,)") = (y(6R ) # (y(6R,))" I ——
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{ — ¢ Correlations Py = O v

N!

(Cil(xl,yl)---é}n(xn, ¥,)) or the probability of having i; elements in (C,—(xj, yj)) = Pi(VI(xj,yj))

R, i, elements in #,, and so on. For non-overlapping regions:

(8: (15 Y1)+ & (s )Y = (& (515 Y1) +++(&; (s Y0))

For overlapping regions, use Disjoint Decomposition Property:
T

(Cf(xlsyl)c:,-(Xzs W) = Z (Ca(ﬁg-éa) Cﬁ(géb) Cy(ﬁéc))
a,fB,y=>20
a+;=i
ptr=j

Y LRIV RN (R,))
a.py=0
a+pf=i
P+y=j ~ ~ ~
Z P (V)Py(V,)PAV,). R VR, =R, UR,UR,
a;i;i{: :@;ﬂ = '%l\r'_%?’b §b = '%1 N :%2

B+y=j

n Y2

R,= R\R, arXiv:2407.03395
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{ — y Correlations

(X(6R))) = Pi(Vsz ) = pdV (Ci(%: )) = Pi(Vige )

(G x(6R))  ifz & I(x,y),
(Cf—l(‘xa y))(Z(é“%z)> I'FZ € I(x'.v y) .

(Ci(xa y))./(é"%z)) - {

Since y(6Z,) = {1(62,), use Disjoint Decomposition Property again:

(G X OR) = (Gx VG GR,)) ; RV = RUR,UR,
= Y @) G )

a,p,y=0
a+p=i
f+yr=1

= (é’i—l(@\&%z»PﬂVa@Z),

P\(Vsg) = pdV + O(p*dV?) (G (ROR)) = Pi_ (Vg — Vsg) = Pi_i(Vg) + O(pdV)
arXiv:2407.03395
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Causal Set Action

g

S=chi(d) Z !

x€¥ i=0 yeQ,(x)

Y
(AS)? = (§%) — (S)?
arXiv:gr-qc/0703099
arXiv:1403.1622

(S) = i C9) Z Z ) = i COZ. | arXiv:1001.2725

i=0 XEF ye{x) i=0 arXiv:1305.2588

arXiv:2412.14036
arXiv:2407.03395
Zi=() D)
XEE yEQ11 (%) ,
) {Iﬂ (1(5R) i=-1,

i=—1,..,n,—1 |- G 2GR)Y(RY) 20,
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Causal Set Action

(=2 ¥ XY X )

i,j=0 X1.%EF y1EQi(x) »,€Qx2)

_ E COCD %,
i,j=0

i—1j-1»

Hy=( Y X X )

x1,%,EF Y1€Q,41(%1) 1,€Q;41(x2)

i=j=-1,

e I o J ey (G DG, )’2)Jf((SRyl)Z(aRyZ)X(aRx,)X((SRxZ)) ij 20

i==—1j=20,
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Summary & Outlook

Statistical fluctuations in the causal set-continuum correspondence
are important and interesting to study.

e Tools and techniques have been developed to streamline these
calculations.

e These studies are necessary in order to understand how close
some causal set functions and their continuum analogues are.
Deviations can lead to interesting phenomenology.

e Complementary numerical studies of these fluctuations can

1
also be carried out: = (%), where
< | Sp[4]] (gesz;‘[ ﬂ]f

Spl.Z] = {€,,%,,...}.
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