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Abstract:

Quasi-Einstein equations are generalizations of the Einstein equation. They arise from warped product Einstein metrics
(Kaluza-Klein reductions), Ricci solitons, cosmology, near-horizon geometries, and smooth measured Lorentzian length spaces.
Despite their apparent generality, they often have a surprising rigidity. | will review some recent developments in the area,
focusing on near-horizon geometries, including Dunajski and Lucietti's near-horizon version of the Hawking rigidity theorem. |

will discuss an application to 5-dimensional extreme (Myers-Perry type) black holes whose horizons admit the structure of the
group SU(2).
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The Einstein equation

Ric(g) = Ag

where Ric(g) is the Ricci curvature tensor of g, and

either

- - - - Or
@ g is a Riemannian metric, : : :
@ g is a Lorentzian metric,
@ (M, g) is a Riemannian

manifold, o (M, g) is a spacetime manifold,

@ A\ € R is the cosmological

@ )\ € R is the Einstein constant,
constant, and

and _ | o
@ the Einstein equation is a

degenerate hyperbolic
second-order PDE system for g.

@ the Einstein equation is a
degenerate elliptic second-order
PDE system for g.

‘Eric Woolgar (University of Alberta)
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Quasi-Einstein metrics

Consider the triple (M, g, X), with g a Riemannian metrics and X a
1-form such that

1 1
Ri e L, - 5 g
IC(g)+2 xt8 = —X® g

Here X* = g71(X,-) and m # 0 and X\ are constants. In index notation:

il 1
Rg G 5 (V,XJ i VJ‘X,') — ;X;Xj — /\g,;,-.

@ m = 0 denotes the Einstein case Ric = A\g, X = 0.
@ The m = £o0 case denotes Ricci solitons.

@ m = positive integer, X = df, get Ricci curvature restricted to the
base of a warped product (e.g., Kaluza-Klein, etc)

@ m = 2: Near horizon geometry equation for extreme black hole.

Eric Woolgar (University of Alberta)  [OEES in e
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Killing vectors

@ Continuous isometries: Curves
in a manifold such that the
manifold is unchanged under
transport along the curves.

@ Tangents to these curves are
Killing vectors.

@ The corresponding covectors
obey Killing's equation
(£Kg)U = V;K_,‘ I V_‘;K,' =3

@ Example: Lines (translation
isometries) and circles (rotation

. . . n = - :
isometries) in R". Wilhelm Karl Joseph Killing
1847-1923

Eric Woolgar (University of Alberta)
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Horizons in spacetime

Relevant types for today:

@ Black hole event horizons,
o Killing horizons,

o degenerate (extreme), and
e nondegenerate (bifurcate),

@ MOTSs and apparent horizons,

For a stationary black hole, event horizons are Killing horizons, and are
foliated by apparent horizons, so we can just say horizon.
Others (not relevant today's talk):

@ Cauchy horizons,
@ Cosmological horizons (particle horizons),

o ...

‘Eric Woolgar (University of Alberta)
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Event horizons

@ Consider a future-timelike curve
7 that which has future-infinite e D g aivally Bt
Lorentzian length (proper time).

o Let /7 (7) denote its past (called
-2

o Take the union of all the /(%)
over all such curves.

T = Fuhare Event Henizam.
@ The complement of the closure W= Fast Breed forieom

Bouwdany o Trappad Bagla. in 3 =Apparudt Hofizen
of this set is the black hole. The 3Tty 1

boundary is the event horizon.

Eric Woolgar (University of Alberta)
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Killing horizons |

e Killing's equation: V;K; + V;K; = 0.

@ Then the flow of the Killing vector field K (whose components are
K' = g¥K;) is a family of isometries.

@ Example: Schwarzschild. % is a Killing vector field, orthogonal to the
hypersurfaces of constant t-coordinate. The isometry is that the
Schwarzschild solution appears frozen in time.

@ We say the Schwarzschild metric is static.

@ The Kerr black hole has a Killing vector field that is not orthogonal to
spacelike surfaces (and is timelike only near infinty). Its twist defines
the (constant) rotation rate of Kerr.

@ The Kerr black hole is not “frozen”. It rotates, but it rotates at a
constant rate so it has the same appearance at all times. It is called
stationary.

Eric Woolgar (University of Alberta)

Pirsa: 25020038 Page 8/24



Killing horizons ||

@ If there is a null hypersurface and a Killing vector field that is null on
the hypersurface and timelike immediately outside it, the hypersurface
is a Killing horizon.

@ Fact: If K is the Killing vector field of a Killing horizon, then
VK = kK for a constant x called the surface gravity.

e If K =0, the Killing horizon is degenerate and the black hole is
extreme.

@ The extreme Kerr metric is a black hole that is spinning as fast as
possible: if it spins any faster, the horizon disappears and the
singularity inside the black hole becomes visible.

Eric Woolgar (University of Alberta)
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Degenerate Killing horizon: NHG equation

I
Re(6)=AG

K.‘l\iua Vedda Fiold

i _ L ,
R(c(gH' Z%X ?me = ﬁ\g

m=2

Figure: Degenerate horizon x = 0: Cross-sections obey a quasi-Einstein equation
with m = 2.

Eric Woolgar (University of Alberta)
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Kerr NHG: Non-closed X

The Kerr NHG has n= m = 2 and

4sin% 6

ds® = (1 20) d6? do’,
5° = (1 + cos” 6) +(1+cos26) ¢,
2sinf cos 4sin% @
= 2 - 7 do.
(1 + cos*0) (1 + cos?6)

Notice that dX # 0, so X is not a closed 1-form.
@ Lucietti-Kunduri: 3 an analogue of Kerr for each m > 0, A = 0.

@ For m=2and A > 0 (A < 0), there are the Kerr de Sitter (Kerr
anti-de Sitter) NHGs.

Questions:
o Is Kerr the only A = 0, m = 2 quasi-Einstein metric on S??
o Is the AdS-Kerr NHG the only A < 0 quasi-Einstein metric on S??

‘Eric Woolgar (University of Alberta)
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Rigidty of the closed case of the NHG equation

@ Take X to be a closed 1-form: 0 = dX.

@ The closed case with m = 2 is the near horizon geometry equation
Ric —|—%£Xg — #X © X = A\g arising from a static extreme black hole.

Theorem (Bahuaud-Gunasekharan-Kunduri-EW 2023a; Wylie 2023)

|
Let (M, g) be a compact quasi-Einstein manifold with m > 0 and dX = 0. |
Then X is a Killing vector field. Indeed:

o X is parallel (i.e., VX =0), and

o either X = 0 and then (M., g) is an Einstein manifold, or (M, g) is the
product of a negative Einstein manifold and a circle S'.

~ Eric Woolgar (University of Alberta)
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Rigidity of the incompressible case of the NHG equation

@ Now take 0 = 40X = divX and let M be a closed manifold.

Theorem (Bahuaud-Gunasekharan-Kunduri-EW 2023b)

IfRic+2£xg — =X ® X = Ag and divX = 0 then £xg = 0, | X| = const, |

and VxX = 0. That is, either (M, g) is Einstein or it possesses a global |
Killing vector field whose integral curves are complete geodesics.
Consequences: If X # 0 then

@ Incompressibility implies symmetry!

@ M must have Euler characteristic 0 (since | X| = const).
o Rules out S?".

@ QE equation reduces to Ric = A\g + %X ® X.

@ Ricci has exactly two distinct eigenvalues, multiplicies 1 and n — 1

respectively, and the former is nonnegative (by the Bochner identity:
Ric < 0 implies there are no global isometries).

Eric Woolgar (University of Alberta)
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Hawking rigidity
@ A stationary spacetime is one with a Killing vector field that is

timelike near infinity.

@ It must be null or spacelike on any black hole event horizon. If it is
null, the event horizon is a Killing horizon.

@ But it may become spacelike between infinity and the event horizon,
if a black hole is present.

@ Then spacetime has an ergosphere region (e.g., Kerr has one).

@ A theorem of Hawking then establishes that spacetimes with an
ergosphere region immediately outside the event horizon have a
second Killing vector field that is null on the event horizon and
timelike immediately outside the horizon.

@ Hence the event horizon in a stationary spacetime is a Killing horizon.

@ Then spacetime is axisymmetric (if analytic, or if the KVF is small:
Alexakis, lonescu, Klainerman; GAFA 2012).

Eric Woolgar (University of Alberta)
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Rigidity theorem whenever m = 2

Theorem (Dunajski-Lucietti)

Let (M, g) be a compact quasi-Einstein manifold with m = 2. If the
one-form X in the quasi-Einstein equation is not closed, there exists a
nontrivial solution of Killing's equation on (M, g).

o If X is closed (so dX = 0) but nonzero, the near horizon geometry is
static and X itself is Killing (Bahuaud-Gunasekaran-Kunduri-EW
2022a; Wylie 2023).

@ Corollary: For n = 2, the unique solution of the quasi-Einstein
equation on S? is the Kerr near horizon geometry.

@ This can be viewed as Hawking rigidity of the near horizon geometry
for extreme black holes.

@ Remarkably, only works for m = 2 in Ric —|—%£Xg - %X ® X = Ag.

Eric Woolgar (University of Alberta)
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Higher-dimensional black holes

@ Frank Tangherlini 1963 extended the Schwarzschild static black hole
solution to spacetimes of dimension > 5.

@ He was motivated by an anthropic principle question: could bound
orbits about stars exist if spacetime were not 4-dimensional?

@ Does the effective potential for geodesic motion about a
Schwarzschild black hole admit bound orbits?

@ In Newtonian theory this question had been asked by Ehrenfest (1917,
1920), building on ideas of Paley (1802).

@ In his PhD thesis directed by Malcolm Perry, Robert Myers found

analogues of the Kerr rotating black holes in all higher dimensions:
Myers-Perry 1986.

@ Later extended to black holes in the background of a nonzero
cosmological constant (Gibbons-Lu-Page-Pope for A > 0).

Eric Woolgar (University of Alberta)
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Myers-Perry black holes in 5 spacetime dimensions

@ 5-dimensional Myers-Perry black holes have (Killing and event)
horizons whose spatial cross-sections are 3-spheres.

@ The 3-sphere is the manifold of the Lie group SU(2).

@ Some extreme (and non-extreme) Myers-Perry black hole horizons
carry a left-invariant SU(2) metric.

@ Main point: SU(2) acts on itself, so left-invariant SU(2) metrics
admit an isometry group of at least 3-dimensions.

@ The isometry group of a left-invariant SU(2) metric can be
3-dimensional (generic case), 4-dimensional (Berger spheres), or
6-dimensional (round sphere).

@ Myers-Perry SU(2) horizons always have 4-dimensional isometry
group.
@ Puzzle: Why does the generic case not occur?

Eric Woolgar (University of Alberta)
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Quasi-Einstein metrics on SU(2)

@ Alice Lim (2022) studied left-invariant quasi-Einstein metrics on
3-dimensional Lie groups.

@ Milnor (1976) famously studied left-invariant Einstein metrics on
3-dimensional Lie groups.

@ The answer to our question can be found in

e Lim 2022 (though a key lemma has an erroneous proof), and
o Chen-Liang-Zhu 2016 (employing variational arguments, which we can
avoid).
@ Along the way, we will encounter a 3-dimensional manifold whose
Ricci tensor does not determine its geometry:
o See Kulkarni, Annals of Math 1970,
o Berger, A Panoramic View ... (2003) pp 213-216.

Eric Woolgar (University of Alberta)
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NHG Equation for degenerate Killing horizon

Figure: Building a left-invariant vector field on a group

Eric Woolgar (University of Alberta)
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SU(2) metrics and Berger spheres

o Generic left-invariant SU(2) metric:
ds’ = 26l @ ol + f’0?° R0’ + 03 R 03,
where £ and 3 are numbers between 0 and 1. The left-invariant
1-forms o' obey [01,02] = 203, and cyclic (e.g., Pauli matrices).
@ The maximal isometry group is 3-dimensional.
@ Berger spheres have ¢ = 3, yielding an additional U(1) isometry.

Maximal isometry group contains SU(2) x U(1) and is 4-dimensional.
@ The Ricci endomorphism of the generic SU(2) metric has eigenvalues

(- (1877

pr =2 250
_, B -1—¢%)
P2 = 5262 )
» (1 . (82 . 32)2)
p3 T 5252

Eric Woolgar (University of Alberta)
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SU(2) metrics with the same Ricci endomorphism |

If two Ricci eigenvalues are equal, WLOG set p; = p».

pP1 = p2
— A - (1-8)=p'-(1-4%)
— gt 14282 =08 —*— 142
— B+ 32 -2 =0
= (*—B°) (2+B°—1) =0.

2

Since £, € (0, 1), then either

or

Eric Woolgar (University of Alberta)
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SU(2) metrics with the same Ricci endomorphism |l

o If 2+ 3%2=1,set B=sinh, € =cosb, 0 € (0, %) Then
ds® = cos? 0o @ ol +sin® 00 ® 0% + 03 ® o3.

@ The Ricci eigenvalues
R )
o pp =202
o gy = DCET)

become

o1 = 03 =0, pg =8,

for any 6. For quasi-Einstein metrics, this arises only when A = 0.

@ Only 6 = 7 is a Berger sphere: ds® = %al Rol+ %02 Ra’+03® 03,

Eric Woolgar (University of Alberta) 1asi-| in equations:
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Extreme Myers-Perry near horizon geometries

@ The horizon metric obeys Ric —|—%£xg — -i—?X ® X = Ag.

@ Since g is left-invariant and Ric is natural, Ric is left-invariant.

@ Then %£Xg — %X ® X is left-invariant.

@ But then X is left-invariant (Lim; Chen-Liang-Zhu; BGKW2024).
@ Fact: The divergence of a left-invariant vector field must vanish.
@ Then BGKW2023b implies that £xg = 0.

@ Then Ric = \g + %X@X.

2
@ Hence A is a multiplicity-two eigenvalue of Ric and A + % IS a
multiplicity-one eigenvalue.

@ From the eigenvalue formulas with p; = p>, get either

e 3 =< (Berger sphere), or

e 32 =1 — €2 but then Killing equation implies that 3 = ¢ = %

Eric Woolgar (University of Alberta)
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Theorem

We have proved the following:
Theorem

Let (M, g) be the near horizon geometry of an extreme Myers-Perry black

hole, with arbitrary cosmological constant. If g is a left-invariant metric on
M, it's a Berger sphere.

@ Furthermore, the Ricci endomorphism has the following signature:
o A <0 = (—,—,0) 0or (—,—,+),
e A\=0 = (0,0,+),
o A>0 = (+,+,+).

@ As things stand, the theorem does not apply to non-extreme
Myers-Perry black holes.

Eric Woolgar (University of Alberta)  SIESESISSS
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