Title: Quasi-Einstein equations and a Myers-Perry rigidity problem

Speakers: Eric Woolgar

Collection/Series: Cosmology and Gravitation

Subject: Cosmology

Date: February 18, 2025 - 11:00 AM

URL: https://pirsa.org/25020038

Abstract:

Quasi-Einstein equations are generalizations of the Einstein equation. They arise from warped product Einstein metrics (Kaluza-Klein reductions), Ricci solitons, cosmology, near-horizon geometries, and smooth measured Lorentzian length spaces. Despite their apparent generality, they often have a surprising rigidity. I will review some recent developments in the area, focusing on near-horizon geometries, including Dunajski and Lucietti's near-horizon version of the Hawking rigidity theorem. I will discuss an application to 5-dimensional extreme (Myers-Perry type) black holes whose horizons admit the structure of the group SU(2).

Pirsa: 25020038 Page 1/24

Quasi-Einstein equations: A Myers-Perry rigidity problem

Eric Woolgar

Dept of Mathematical and Statistical Sciences
University of Alberta
ewoolgar@math.ualberta.ca
http://www.math.ualberta.ca/~ewoolgar

Feb 2025

Eric Woolgar (University of Alberta)

Quasi-Einstein equations: A Myers-Perry rigic

Feb 2025

1/25

Pirsa: 25020038 Page 2/24

The Einstein equation

$$Ric(g) = \lambda g$$

where Ric(g) is the Ricci curvature tensor of g, and

either

- g is a Riemannian metric,
- (M,g) is a Riemannian manifold,
- $oldsymbol{\lambda} \in \mathbb{R}$ is the Einstein constant, and
- the Einstein equation is a degenerate elliptic second-order PDE system for g.

or

- g is a Lorentzian metric,
- (M,g) is a spacetime manifold,
- $\lambda \in \mathbb{R}$ is the cosmological constant, and
- the Einstein equation is a degenerate hyperbolic second-order PDE system for g.

Eric Woolgar (University of Alberta)

Quasi-Einstein equations: A Myers-Perry rigic

Feb 2025

Quasi-Einstein metrics

Consider the triple (M, g, X), with g a Riemannian metrics and X a 1-form such that

$$\operatorname{\mathsf{Ric}}(g) + rac{1}{2} \pounds_{X^\sharp} g - rac{1}{m} X \otimes X = \lambda g.$$

Here $X^{\sharp}=g^{-1}(X,\cdot)$ and $m\neq 0$ and λ are constants. In index notation:

$$R_{ij} + rac{1}{2} \left(
abla_i X_j +
abla_j X_i
ight) - rac{1}{m} X_i X_j = \lambda g_{ij}.$$

- m=0 denotes the Einstein case Ric $=\lambda g$, $X\equiv 0$.
- The $m = \pm \infty$ case denotes Ricci solitons.
- m = positive integer, X = df, get Ricci curvature restricted to the base of a warped product (e.g., Kaluza-Klein, etc)
- m = 2: Near horizon geometry equation for extreme black hole.

Killing vectors

- Continuous isometries: Curves in a manifold such that the manifold is unchanged under transport along the curves.
- Tangents to these curves are *Killing vectors*.
- The corresponding covectors obey Killing's equation $(\pounds_K g)_{ij} = \nabla_i K_j + \nabla_j K_i = 0.$
- Example: Lines (translation isometries) and circles (rotation isometries) in \mathbb{R}^n .

Wilhelm Karl Joseph Killing 1847–1923

Eric Woolgar (University of Alberta)

Quasi-Einstein equations: A Myers-Perry rigic

Feb 2025

Horizons in spacetime

Relevant types for today:

- Black hole event horizons,
- Killing horizons,
 - degenerate (extreme), and
 - nondegenerate (bifurcate),
- MOTSs and apparent horizons,

For a stationary black hole, event horizons are Killing horizons, and are foliated by apparent horizons, so we can just say *horizon*. Others (not relevant today's talk):

- Cauchy horizons,
- Cosmological horizons (particle horizons),
- ...

1 ロト・ **御**ト + 三ト + 差 + 一 差 - 夕久(

Eric Woolgar (University of Alberta)

Quasi-Einstein equations: A Myers-Perry rigic

Feb 2025

5 / 25

Pirsa: 25020038 Page 6/24

Event horizons

- Consider a future-timelike curve γ that which has future-infinite Lorentzian length (proper time).
- Let $I^-(\gamma)$ denote its past (called a TIP).
- Take the union of all the $I^-(\gamma)$ over all such curves.
- The complement of the closure of this set is the *black hole*. The boundary is the *event horizon*.

Conformed Diagram of Maximally Extended Schwarzshild

Ht = Future Event Herizon.

H= Past Event Horizon

Boundary of Trappad Region in & = Apparent Horizon

4 ロト 4 都 + 1 注) 4 等 + 1 差 9 9 0 0

Eric Woolgar (University of Alberta)

Quasi-Einstein equations: A Myers-Perry rigic

Feb 2025

Killing horizons I

- Killing's equation: $\nabla_i K_i + \nabla_j K_i = 0$.
- Then the flow of the Killing vector field K (whose components are $K^i = g^{ij}K_i$) is a family of isometries.
- Example: Schwarzschild. $\frac{\partial}{\partial t}$ is a Killing vector field, orthogonal to the hypersurfaces of constant t-coordinate. The isometry is that the Schwarzschild solution appears frozen in time.
- We say the Schwarzschild metric is static.
- The Kerr black hole has a Killing vector field that is not orthogonal to spacelike surfaces (and is timelike only near infinty). Its twist defines the (constant) rotation rate of Kerr.
- The Kerr black hole is not "frozen". It rotates, but it rotates at a constant rate so it has the same appearance at all times. It is called stationary.

Eric Woolgar (University of Alberta)

Quasi-Einstein equations: A Myers-Perry rigic

Feb 2025

Killing horizons II

- If there is a null hypersurface and a Killing vector field that is null on the hypersurface and timelike immediately outside it, the hypersurface is a *Killing horizon*.
- Fact: If K is the Killing vector field of a Killing horizon, then $\nabla_K K = \kappa K$ for a constant κ called the *surface gravity*.
- If $\kappa = 0$, the Killing horizon is *degenerate* and the black hole is *extreme*.
- The extreme Kerr metric is a black hole that is spinning as fast as possible: if it spins any faster, the horizon disappears and the singularity inside the black hole becomes visible.

4 D P 1 D P 1 D P 1 D P 2 D P 9 Q C

Eric Woolgar (University of Alberta)

Quasi-Einstein equations: A Myers-Perry rigic

Feb 2025

8 / 25

Pirsa: 25020038 Page 9/24

Degenerate Killing horizon: NHG equation

Figure: Degenerate horizon $\kappa=0$: Cross-sections obey a quasi-Einstein equation with m=2.

Eric Woolgar (University of Alberta)

Quasi-Einstein equations: A Myers-Perry rigic

Feb 2025

Kerr NHG: Non-closed X

The Kerr NHG has n=m=2 and

$$ds^2 = \left(1 + \cos^2 \theta\right) d\theta^2 + rac{4\sin^2 \theta}{\left(1 + \cos^2 \theta\right)} d\phi^2,$$
 $X = rac{2\sin \theta \cos \theta}{\left(1 + \cos^2 \theta\right)} d\theta - rac{4\sin^2 \theta}{\left(1 + \cos^2 \theta\right)^2} d\phi.$

Notice that $dX \neq 0$, so X is not a closed 1-form.

- Lucietti-Kunduri: \exists an analogue of Kerr for each m > 0, $\lambda = 0$.
- For m=2 and $\lambda>0$ ($\lambda<0$), there are the Kerr de Sitter (Kerr anti-de Sitter) NHGs.

Questions:

- Is Kerr the only $\lambda = 0$, m = 2 quasi-Einstein metric on \mathbb{S}^2 ?
- Is the AdS-Kerr NHG the only $\lambda < 0$ quasi-Einstein metric on \mathbb{S}^2 ?

Eric Woolgar (University of Alberta) Quasi-Einstein equations: A Myers-Perry rigic

Rigidty of the closed case of the NHG equation

- Take X to be a closed 1-form: 0 = dX.
- The closed case with m=2 is the near horizon geometry equation $\operatorname{Ric} + \frac{1}{2} \pounds_X g \frac{1}{m} X \otimes X = \lambda g$ arising from a *static* extreme black hole.

Theorem (Bahuaud-Gunasekharan-Kunduri-EW 2023a; Wylie 2023)

Let (M,g) be a compact quasi-Einstein manifold with m>0 and dX=0. Then X is a Killing vector field. Indeed:

- X is parallel (i.e., $\nabla X = 0$), and
- either X = 0 and then (M, g) is an Einstein manifold, or (M, g) is the product of a negative Einstein manifold and a circle \mathbb{S}^1 .

Eric Woolgar (University of Alberta)

Quasi-Einstein equations: A Myers-Perry rigic

Feb 2025

Rigidity of the incompressible case of the NHG equation

• Now take $0 = \delta X \equiv \text{div } X$ and let M be a closed manifold.

Theorem (Bahuaud-Gunasekharan-Kunduri-EW 2023b)

If Ric $+\frac{1}{2}\mathcal{L}_X g - \frac{1}{m}X \otimes X = \lambda g$ and div X = 0 then $\mathcal{L}_X g = 0$, |X| = const, and $\nabla_X X = 0$. That is, either (M, g) is Einstein or it possesses a global Killing vector field whose integral curves are complete geodesics.

Consequences: If $X \neq 0$ then

- Incompressibility implies symmetry!
- M must have Euler characteristic 0 (since |X| = const).
 - Rules out \mathbb{S}^{2n} .
- QE equation reduces to Ric = $\lambda g + \frac{1}{m}X \otimes X$.
- Ricci has exactly two distinct eigenvalues, multiplicies 1 and n-1respectively, and the former is nonnegative (by the Bochner identity: Ric < 0 implies there are no global isometries).

Hawking rigidity

- A stationary spacetime is one with a Killing vector field that is timelike near infinity.
- It must be null or spacelike on any black hole event horizon. If it is null, the event horizon is a Killing horizon.
- But it may become spacelike between infinity and the event horizon, if a black hole is present.
- Then spacetime has an *ergosphere region* (e.g., Kerr has one).
- A theorem of Hawking then establishes that spacetimes with an ergosphere region immediately outside the event horizon have a second Killing vector field that is null on the event horizon and timelike immediately outside the horizon.
- Hence the event horizon in a stationary spacetime is a Killing horizon.
- Then spacetime is axisymmetric (if analytic, or if the KVF is small: Alexakis, Ionescu, Klainerman; GAFA 2012).

Rigidity theorem whenever m = 2

Theorem (Dunajski-Lucietti)

Let (M,g) be a compact quasi-Einstein manifold with m=2. If the one-form X in the quasi-Einstein equation is not closed, there exists a nontrivial solution of Killing's equation on (M, g).

- If X is closed (so dX = 0) but nonzero, the near horizon geometry is static and X itself is Killing (Bahuaud-Gunasekaran-Kunduri-EW 2022a; Wylie 2023).
- Corollary: For n=2, the unique solution of the quasi-Einstein equation on S^2 is the Kerr near horizon geometry.
- This can be viewed as Hawking rigidity of the near horizon geometry for extreme black holes.
- Remarkably, only works for m=2 in $\mathrm{Ric} + \frac{1}{2} \pounds_X g \frac{1}{m} X \otimes X = \lambda g$.

Higher-dimensional black holes

- Frank Tangherlini 1963 extended the Schwarzschild static black hole solution to spacetimes of dimension ≥ 5 .
- He was motivated by an anthropic principle question: could bound orbits about stars exist if spacetime were not 4-dimensional?
- Does the effective potential for geodesic motion about a Schwarzschild black hole admit bound orbits?
- In Newtonian theory this question had been asked by Ehrenfest (1917, 1920), building on ideas of Paley (1802).
- In his PhD thesis directed by Malcolm Perry, Robert Myers found analogues of the Kerr rotating black holes in all higher dimensions: Myers-Perry 1986.
- Later extended to black holes in the background of a nonzero cosmological constant (Gibbons-Lu-Page-Pope for $\Lambda > 0$).

·ロト・日・ 1日 1 日 1 日 1 日 1 日 1 1 1 日 1 1 1 日 1 1 1 日 1 1 1 日 1 1 日 1 1 日 1 1 日 1 1 日 1

Eric Woolgar (University of Alberta)

Quasi-Einstein equations: A Myers-Perry rigic

Feb 2025

Myers-Perry black holes in 5 spacetime dimensions

- 5-dimensional Myers-Perry black holes have (Killing and event) horizons whose spatial cross-sections are 3-spheres.
- The 3-sphere is the manifold of the Lie group SU(2).
- Some extreme (and non-extreme) Myers-Perry black hole horizons carry a left-invariant SU(2) metric.
- Main point: SU(2) acts on itself, so left-invariant SU(2) metrics admit an isometry group of at least 3-dimensions.
- The isometry group of a left-invariant SU(2) metric can be 3-dimensional (generic case), 4-dimensional (Berger spheres), or 6-dimensional (round sphere).
- Myers-Perry SU(2) horizons always have 4-dimensional isometry group.
- Puzzle: Why does the generic case not occur?

40 × 40 × 12 × 13 × 13 × 12 × 900

Eric Woolgar (University of Alberta)

Quasi-Einstein equations: A Myers-Perry rigic

Feb 2025

Quasi-Einstein metrics on SU(2)

- Alice Lim (2022) studied left-invariant quasi-Einstein metrics on 3-dimensional Lie groups.
- Milnor (1976) famously studied left-invariant Einstein metrics on 3-dimensional Lie groups.
- The answer to our question can be found in
 - Lim 2022 (though a key lemma has an erroneous proof), and
 - Chen-Liang-Zhu 2016 (employing variational arguments, which we can avoid).
- Along the way, we will encounter a 3-dimensional manifold whose Ricci tensor does not determine its geometry:
 - See Kulkarni, Annals of Math 1970,
 - Berger, A Panoramic View ... (2003) pp 213-216.

イロト・御・・世・・華・ 夏 かくの

Eric Woolgar (University of Alberta)

Quasi-Einstein equations: A Myers-Perry rigic

Feb 2025

NHG Equation for degenerate Killing horizon

Figure: Building a left-invariant vector field on a group

Eric Woolgar (University of Alberta)

Quasi-Einstein equations: A Myers-Perry rigic

Feb 2025

18 / 25

Pirsa: 25020038 Page 19/24

SU(2) metrics and Berger spheres

• Generic left-invariant SU(2) metric:

$$ds^2 = \varepsilon^2 \sigma^1 \otimes \sigma^1 + \beta^2 \sigma^2 \otimes \sigma^2 + \sigma^3 \otimes \sigma^3,$$

where ε and β are numbers between 0 and 1. The left-invariant 1-forms σ^i obey $[\sigma^1, \sigma^2] = 2\sigma^3$, and cyclic (e.g., Pauli matrices).

- The maximal isometry group is 3-dimensional.
- Berger spheres have $\varepsilon = \beta$, yielding an additional U(1) isometry. Maximal isometry group contains SU(2) × U(1) and is 4-dimensional.
- The Ricci endomorphism of the generic SU(2) metric has eigenvalues

$$\rho_1 = 2 \frac{\left(\varepsilon^4 - (1 - \beta^2)^2\right)}{\varepsilon^2 \beta^2},$$

$$\rho_2 = 2 \frac{\left(\beta^4 - (1 - \varepsilon^2)^2\right)}{\varepsilon^2 \beta^2},$$

$$\rho_3 = 2 \frac{\left(1 - (\varepsilon^2 - \beta^2)^2\right)}{\varepsilon^2 \beta^2}.$$

Eric Woolgar (University of Alberta)

Quasi-Einstein equations: A Myers-Perry rigic

Feb 2025

SU(2) metrics with the same Ricci endomorphism I

If two Ricci eigenvalues are equal, WLOG set $\rho_1 = \rho_2$.

$$\rho_{1} = \rho_{2}$$

$$\Rightarrow \varepsilon^{4} - (1 - \beta^{2})^{2} = \beta^{4} - (1 - \varepsilon^{2})^{2}$$

$$\Rightarrow \varepsilon^{4} - \beta^{4} - 1 + 2\beta^{2} = \beta^{4} - \varepsilon^{4} - 1 + 2\varepsilon^{2}$$

$$\Rightarrow \varepsilon^{4} - \beta^{4} + \beta^{2} - \varepsilon^{2} = 0$$

$$\Rightarrow (\varepsilon^{2} - \beta^{2}) (\varepsilon^{2} + \beta^{2} - 1) = 0.$$

Since $\varepsilon, \beta \in (0,1)$, then either

$$\varepsilon = \beta$$

or

$$\varepsilon^2 + \beta^2 = 1.$$

Eric Woolgar (University of Alberta)

Quasi-Einstein equations: A Myers-Perry rigic

Feb 2025

SU(2) metrics with the same Ricci endomorphism II

• If
$$\varepsilon^2 + \beta^2 = 1$$
, set $\beta = \sin \theta$, $\varepsilon = \cos \theta$, $\theta \in (0, \frac{\pi}{2})$. Then
$$ds^2 = \cos^2 \theta \sigma^1 \otimes \sigma^1 + \sin^2 \theta \sigma^2 \otimes \sigma^2 + \sigma^3 \otimes \sigma^3.$$

- The Ricci eigenvalues

 - $\rho_3 = 2 \frac{\left(1 (\varepsilon^2 \beta^2)^2\right)}{\varepsilon^2 \beta^2}.$

become

$$\rho_1 = \rho_2 = 0, \ \rho_3 = 8,$$

for any θ . For quasi-Einstein metrics, this arises only when $\lambda = 0$.

• Only $\theta = \frac{\pi}{4}$ is a Berger sphere: $ds^2 = \frac{1}{2}\sigma^1 \otimes \sigma^1 + \frac{1}{2}\sigma^2 \otimes \sigma^2 + \sigma^3 \otimes \sigma^3$.

Eric Woolgar (University of Alberta)

Quasi-Einstein equations: A Myers-Perry rigic

Feb 2025

Extreme Myers-Perry near horizon geometries

- The horizon metric obeys $\operatorname{Ric} + \frac{1}{2} \mathcal{L}_X g \frac{1}{m} X \otimes X = \lambda g$.
- Since g is left-invariant and Ric is natural, Ric is left-invariant.
- Then $\frac{1}{2} \pounds_X g \frac{1}{m} X \otimes X$ is left-invariant.
- But then X is left-invariant (Lim; Chen-Liang-Zhu; BGKW2024).
- Fact: The divergence of a left-invariant vector field must vanish.
- Then BGKW2023b implies that $\pounds_X g = 0$.
- Then Ric = $\lambda g + \frac{1}{m}X \otimes X$.
- Hence λ is a multiplicity-two eigenvalue of Ric and $\lambda + \frac{|X|^2}{m}$ is a multiplicity-one eigenvalue.
- From the eigenvalue formulas with $\rho_1=\rho_2$, get either
 - $\beta = \varepsilon$ (Berger sphere), or
 - $\beta^2 = 1 \varepsilon^2$ but then Killing equation implies that $\beta = \varepsilon = \frac{1}{\sqrt{2}}$.

Eric Woolgar (University of Alberta)

Quasi-Einstein equations: A Myers-Perry rigic

Feb 2025

Theorem

We have proved the following:

Theorem

Let (M,g) be the near horizon geometry of an extreme Myers-Perry black hole, with arbitrary cosmological constant. If g is a left-invariant metric on M, it's a Berger sphere.

- Furthermore, the Ricci endomorphism has the following signature:
 - $\lambda < 0 \implies (-, -, 0)$ or (-, -, +),
 - $\bullet \ \lambda = 0 \implies (0,0,+),$
 - $\lambda > 0 \implies (+, +, +)$.
- As things stand, the theorem does not apply to non-extreme Myers-Perry black holes.

Eric Woolgar (University of Alberta)

Quasi-Einstein equations: A Myers-Perry rigic

Feb 2025