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Abstract:

Lorentzian path integrals exhibit profoundly different properties from Euclidean ones due to the oscillatory integrand which
weighs different configurations through interference. Key troubles encountered in Euclidean quantum gravity are the conformal
factor problem of Euclidean quantum GR and divergences due to spike configurations in Euclidean quantum Regge calculus. The
first part of this talk will focus on how these troubles are resolved in Lorentzian quantum Regge calculus. | will emphasize the
unambiguous choice of contour for the integral over the conformal mode in a saddle-point expansion and furthermore show that
bulk-length expectation values are finite for spike and spine configurations away from the classical regime.

The second part of this talk will focus on properties of Lorentzian path integrals beyond GR. | will illustrate that higher-derivative
and non-local actions can be expected to suppress spacetime configurations with curvature singularities. Finally, | will revisit the
long-standing question of global symmetries in quantum gravity by providing examples for non-local actions designed to
suppress global-symmetry-violating black-hole configurations in the Lorentzian path integral.
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Path integral for quantum gravity

£i= J D[gravity] D [matter] e’
®

* configuration space & (fundamental d.o.f.):
» [gravity] = geometry? topology? continuum vs discrete?

» signature: Lorentzian vs Euclidean?*
This talk:

e [gravity] = fundamentally
continuous Lorentzian
metric geometries

 aspects of *'s in different
frameworks

e measure P?*

e action § (dynamics):
» classical GR vs higher-derivative or non-local?*
* coupling to matter?

* evaluation:
» semiclassical or saddle-point approximation?*
* symmetry reduction a.k.a. minisuperspace?*
* gauge fixing?™
» regularization?*
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Conformal factor problem in Euclidean quantum GR

Selg]l = — Jd‘lx\/ER not positive semi-definite — conformal transformation: S;[Q%g] D — Jd4x\/§(92R + 65390‘“9)

1 1
Expansion to 2nd order: S;[g + 8g] = Sglg] + 6S; + 55QSE +... with 8g,, = h,, = h] (tracefree) + Zhgw(trace) — onshell:

828 > —hTV2hT, +hV?h
885=0

ZEQ) * divergent Gaussian integral

mathematical resolution: # — ik physical ad-hoc procedure — €5 = ?

“note: saddle-point expansion
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Conformal factor (non-)problem in Lorentzian quantum Regge calculus

SL[g] = Jd4x /__gR discretization = regularization SLReggE[Se] = Z me}l MG

he/\
€. =1{lgl} = %LRegge = {s, | o-inequalities}
o d-simplex
h (hinge): codimension-2 subsimplex
€: deficit angle + curvature
. TR 2 TYidbet <1 9197 V,: signed squared volume of &
conformal mode d.o.f. encoded in (d + 1) — 1 Pachner moves: | |B & Dittrich 2023 B L i

1
Expansion to 2nd order: SLRegge[se + ds,] = SLReggg[se] + 5SLRegge + —56°8 + ... with ds, = 4, — onshell:

2 LRegge

-1 @, iga? . :
ZSR V¥ 5| die??”, 6 Hessian eigenvalues I3 (3

egge 1

R
>0 a<0
51 (2),, SO Vil Vala-$

ZLR “ convergent Gaussian integral v . ™

egge | A f 1

— ‘// Lo r Ro(d) — sl N - R
Z i \\.
x/ \\/
5—1(4d)

*note: saddle-point expansion
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Spike problem in Euclidean quantum Regge calculus

Ero., = (8| 0-inequalities in Euclidean signature: V; > 0 & V, > 0 Vp C o}

egre
o: d-simplex
V,: signed squared volume of subsimplex p C o,
computed as Caley-Menger determinant

2d Fuclidean example: WA=(012) >0& Sg:(Ol),(O‘Z),(l‘Z) >0 (Wﬂ <0,V,>0,V, = 0if p timelike, spacelike, null}

e.g. possible: 5,_ 5y > 0 fixed, 5,91y p) = + 0 = spike A

Example for spikes in d-dim: initial configuration of (d + 1) — 1 Pachner moves with |bulk edges| — oo

4—-1@3d) 1 5-1(4d)

bulk length expectation values: (/") — oo infinite for sufficiently high n
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Spike problem in Euclidean quantum Regge calculus

Ero, = (8| 0-inequalities in Euclidean signature: V; > 0 & V, > 0 Vp C o}

Core
o: d-simplex
V,: signed squared volume of subsimplex p C o,
computed as Caley-Menger determinant

2d Fuclidean example: WA=(012) >0& Sg:(Ol),(O‘Z),(l‘Z) >0 (Wﬂ <0, V,>0,V, = 0if p timelike, spacelike, null}

e.g. possible: 5,_ 5y > 0 fixed, 5,91y p) = + 00 = spike A

Example for spikes in d-dim: initial configuration of (d + 1) — 1 Pachner moves with |bulk edges| — oo

4-1@3d) 1 5-1(4d)

bulk length expectation values: (/") — oo infinite for sufficiently high n
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Spike and spine (non-)problem in Lorentzian quantum Regge calculus

= {5, | o-inequalities in Lorentzian signature: V;, <0& (p Co,V,<0=> Vp' D p,p'Co:V,<0) }

LRegge

2d Lorentzian example: VA _ 5 < 0 e.g. for A\ = (st1,), (ts,5,) always satisfied L

e.g. pOSSible: Se=(]2) < 0 ﬁXEd, S€=(01),(02) -4+ 00 = SPike L, :

e.g. pOSSible: Se=(02),(12) >0 ﬁXEd, S€=(01) - — 00 = Spine d
Example for spines in d-dim: initial configuration of d — 2 Pachner moves with |bulk edge| — oo

3-23d)

bulk length expectation values: (1"}, m = n+ M, Du ~ I™ measure

(&)
(;Ln)S—l *®5 J dAl™e 1ﬁ\/1 = 2ﬂg€+lEI_2m_1(— fﬂ'ﬁ\ / /10) finite for all m [buik configuration: (sssss) or (111tt), so; — £ 4, f(bdry) € R]
A
&
(A2 ~ J dAA e = A(’)”“El_m(—ijzﬂo) finite for all m [bulk configuration: (s) or (), 55, = * 4]
A9

“note: asymptotic regime far away from classical saddle point
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Properties of Lorentzian path integrals beyond GR

So far:

I) Properties of Lorentzian vs Euclidean path integrals for GR (continuum + Regge calculus) — 2 types of approximations:
* saddle-point approximation vs far-from-saddle-point approximation within quantum GR
¢ quantum GR = semiclassical approximation of an unknown quantum-gravity theory including higher-derivative & non-
local terms

Now:

II) Properties of Lorentzian vs Euclidean path integrals beyond GR (continuum)
o destructive interference between neighbouring off-shell “paths” with rapidly oscillating phase factors iS
* action S (dynamics) dictates which configurations have | S[g]| > 1 and are therefore suppressed dynamically

Questions:
* How does the presence of higher-derivative or non-local terms affect the contribution of (off-shell) spacetime configurations

with curvature singularities?
* Are there dynamical mechanisms for the suppression of global-symmetry-violating configurations?
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Infinite-action principle
z= [ P[gle’Se!
€
dynamical suppression mechanism: | S[g]| > 1 for g and “neighbours” = {[g]} suppressed in Z

€ = {[g] Lorentzian four—geometries} D {geometries with curvature singularity}, {generic black-hole gcomctrics}

Applications:

1. singularity suppression in quantum amplitudes as selection principle for action § and gravitational dynamics

2. required dynamics for the suppression of virtual black-hole configurations in the context of the no-global-symmetries
conjecture
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Suppression of spacetimes with curvature singularity

Viewpoint

» singularity theorems = breakdown of predictivity of GR as classical theory
* ultimate goal: singularity-free quantum theory

Question: Significance of classical spacetime singularities for quantum gravity?

Goal: find S satisfying |S [{ (g] singular}] | = o0 = infinite-action principle (quantum)

Logic:

§ satisfies quantum singularity-suppression principle (QSSP) :& V g off-shell singular: |S [g] ‘ = 00
reversed: 3 g off-shell singular: ‘S [g] | = finite = § does not satisfy QSSP

Consequence
allows restriction to “minisuperspace” for ruling out actions S incompatible with QSSP
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Suppression of spacetimes with curvature singularity

focus: spacetimes with curvature singularity + static spherically symmetry

Quantum suppression of classical spacetime regular spacetimes

singularities guiding principle for buildingand = [eCGpsmemrnprmree eSS SE S &

constraining quantum-gravitational dynamics /et L

_________________ 1_

* full singularity suppression can not be achieved "7 7 it ol Ll S 1]
via § = S[%", & [I* Z] for any finite n,k € N = N

Sore Somaraicgravy-- @ EFTs [JB 2023]

¢ structural differences in suppression powers of
curvature invariants D & versus curvature-
derivative invariants D %,V

10 e e e T ] LIS ——— 10[~ ‘ L 10
i A(r) = 1%, Blr)=r" 1 | A(r) = v, Blr) =" i Al =+, B(r) =" L A(r) = 1%, B(r) =+
si 5 5 5
s ol Casel:a#0,8=0 o ﬂfCaseI:a;éoﬂ:O . . o Casel:a#0,8=0 L g Casel:ia#0,8=0
| =] I | =] e S L =] L =
| i o
1 =] <
-5/ i -5

i : -10[ n n n !
-10 -5 Q 5 10 -10 -5 0 5 10
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Virtual black-hole configurations in the path integral
No-global-symmetries conjecture
Hawking evaporation of a black hole incompatible with global charge conservation (remnants problematic too)
What if virtual black holes do not contribute to quantum-gravitational transition amplitudes?

Question: What dynamics is required to suppress global-symmetry violating black-hole configurations in the
Lorentzian path integral?

Goal: find § satisfying ‘S[{g black hole}]‘ =

q?

12
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Invariant characterization of black-hole horizons

General dynamical spherically symmetric black-hole metric

3 2m(r, v)

ds? = — g2Ptrv) (1 )afv2 + 2eP¥Ndydr + R(r)*dQ?, apparent horizon(s) at 7 satisfying: R(r) — 2m(r,v) = 0

R(r)

Horizon-detecting scalar invariant™

¥ = 4C2( V'uC)2 - (VMCQ)2 = (R(r) = 2m(r,v)) - F(m(r,v), B(r,v),R(r)), F >0 (C,,, Weyl tensor)

= x| =0 & r,apparenthorizoni.e. black hole (or wormhole)

T

*note: apparent horizon = quasi-local surface (vs event horizon = teleological), y « 6,6_ with 6, expansions of the two

radial null geodesic vector fields
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Destructive interference of virtual black-hole configurations

Non-local action suppressing global-symmetry-violating black-hole configurations

1
S= [d4x [—gZ with Px— = ‘S[{g black hole (spherically symmetric)}]‘ = 00
4

What are black-hole “neighbours”?

BHl with (ml, Rl’ ﬂl) s.t. (Rl - 2m1)

=0~ BH2 with (mz, Rz, ﬁz) s.t. (R2 - 2m2)

1 Thy

P
Deformations preserving y; , = oo:

« infinitesimal deformation of horizon surface: f, = f,, (m;, R)) = (m,, R,)
¢ infinitesimal deformation away from horizon: m; =m,, R, = R,, f; » f,
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Destructive interference of virtual black-hole configurations

Example — one-parameter deformations of given black hole configuration (m(r,v) = m(r), (r,v) =0, R(r) = r)

m(r)=M — my(r) =M+ myr* s.t. “configuration space” € = {(m,)}
(one-parameter deformations of Schwarzschild labeled by a)

m, =0+ m, K1 fixed & “infinitesimally close” (to Schwarzschild) in €

=)

rapidly oscillating phase factor
leads to destructive interference
between black-hole neighbours

0,

..................

2.000 2.005 2010 2015 2.020

r

What is left in €? = no black holes — horizonless compact objects?

Pirsa: 25020037

vV—glIn []/)(2]

|

66.6

61.2

55.8

-50.4

45.0

-39.6

34.2

(a3

39
38°

37°

35!
3.4-

Im {ew]
:‘ 0.855

0.665
0.475
0.285
0.095
-—0.095
-0.285

-0.475

-0.665

2.0012 2.0014

2.0016 2.0018 2.0020 —0.855

r

red dashed line: (r, —2M)r; —2m, =0

= horizon locations of configurations with

different a

Page 16/17

15



Conclusion

Message: Lorentzian path integrals distinct from Euclidean path integrals

Zi= J D[g] *i!8] (quantum interference) vs Z, = J D[g] e8] (statistical weighting)
€ €

L E

oscillatory integrand...

* evades conformal factor problem of Euclidean quantum GR (in framework of Lorentzian quantum Regge
calculus)

* ensures finiteness of bulk length expectation values for spikes & spines in Lorentzian quantum Regge calculus
* leads to destructive interference between neighbouring configurations with infinitely fast oscillating phase factors

* thereby provides selection principles for gravitational dynamics consistent with quantum singularity
suppression and allowance of global symmetries in a path integral for quantum gravity
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