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Abstract:
The so-called pseudo-potentials modeling fractional quantum Hall systems are quantum many-body Hamiltonians that are
frustration free and have two symmetries, one related to the conservation of charge (particle number) and another to the
conservation of dipole moment (angular momentum), in addition to translation invariance. We show that for such systems the

minimum energy of charged excitations is bounded below by the minimum energy of neutral excitations. This property, which

had been repeatedly observed in numerical simulations, has a surprisingly simple proof (joint work with Marius Lemm, Simone
Warzel, and Amanda Young, arxiv:2410.11645).
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Introduction

This talk is about the energy spectrum of fractional quantum Hall systems, which are
insulating materials on a surface (2D) subject to perpendicular magnetic field, with the
number of electrons, n < L/q, where L is the number that would fill the first Landau
level and g > 3 is an odd integer (or g even and bosonic particles).

For example, consider a systems on a torus (periodic b.c.):

Figure: Torus geometry [1,L] = Z/LZ
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We consider many-body Hamiltonians for fermions (or bosons) in 1D with a special
symmetry: conservation of dipole moment. We focus on the fermionic case. n; = a}raj.
For example, the Haldane pseudopotentials for Fractional Quantum Hall (FQH)
systems have this structure. An example with g = 3 for which we know there is a gap

above the ground states is:

H = Z (”j”j+2 + K QfQj) ,qj = aj+1dj+2 — A 3jaj43, K > 0,A € C,
J

Theorem (N-Young-Warzel 2020 & 2021, Young-Warzel 2022 & 2023)
For all A € C, 0 < |\| < 5.3548, k > 0 there is a constant f (|A|?) < 1/3 for which

K | 1 1 .
" K B . |
i inf gapfjy,y = 3 min {2+2h~,/\|2’ 115 2(1+2]\P) (1 v 3FUA )) }
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Variants of such models are also used to study phase transitions in FQH systems, some
of which break a continuous symmetry (nematic order, skyrmions), leading to closing

of the gap, as seen in the figure below.

Gap
A
Gapped FQH Nematic Gapless
Charge B (CDW)
E Neutral

> |

From: Pu, Balram , Taylor, Fradkin , and Papi¢, Phys. Rev. Lett. 132, 236503 (2024).

Note that the charge gap always exceeds the neutral gap.

. This relation between the two types of gap was also observed by Haldane and

co-workers in numerical calculations for pseudopotential systems.
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Observed qualitative feature of the spectrum: charge gap > neutral gap for systems

with n particles and n ~ L/q. Energies are given by spectrum of the Hamiltonian H,,.
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Setup and symmetries

We consider spinless fermions on a ring: [1, L] = Z/LZ. The fermionic Fock space with

one-particle space H = ¢?([1, L]), is the finite direct sum of fixed particle number

sectors:

F=@F., N=Pnl|s

n=>0 n=>0

The systems we consider will have symmetries given by a group of unitaries on F

generated by T, U, and V defined as follows:

1.
2.

translation: T#a;T = aj_1, med L, J=1,...,L;

particle number conservation described by a gauge group generated by the particle
number operator N := Zj-‘zl a}aj: U=exp (2N).
L t

. conservation of center of mass D := )~ j ajaj, the dipole moment. This yields

J
another group of unitaries generated by V: V = exp (2—Z”D) :
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The eigenspaces of N are the sectors F,,.The eigenvalues of D are also a set of integers

including 1. Hence, U and V each generate a finite group of order L.
It is straightforward to check the following relations among these symmetries:

VT =UTV, Ul = TU, OV = W, (1)
Important: note that 7 and V do not commute. Here some useful implications of
(1):

Suppose we have 1) € F with Vi) = exp (27i¢) ¢ for d € Z. Then
() IF 3 € Fp, and j € N:

Iy = exp (21 L) Ty, @)

(i) If Y € F,and j € {1,...,L}:

o Vaji = exp (27rfd ZJ> aj (3)
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Assumptions on the Hamiltonian

1. Hamiltonian H defined on H is a self-adjoint operator of the following form:

M
i ch a*(fl(k))---aT(f,%k))a(g(") a(g @Hn’
k=1

n>0
forsome m>2 M > 1, and C, € C, fl(k),...,f,%),gl(k),...,g,qu) c H,
k=1, ..., M.
2. H>0.

3. ker Hy, # {0}, and define nyax := max{n > m | ker H, # {0} } Furthermore, we
assume Npax < L.

4. H commutes with T, U, and V/, defined before.

Another way to express Assumption 3 is to require existence of ny,x > m such that
O,
ker H, # {0} for all n < npyax, and ker H, = {0} for all n > npax.
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A combinatorial identity

Na'(f)---a'(fm)a(gm) - a(g1) = ma'(h)---a (fm)a(gm)- - a(g1)
£33 [al(h) -+ al (fm)alm) -~ aler)| 2

Let H,, denote the restriction H to F,. Then, the identity implies for all n > m:

L
1
H TH 5
s n—l—l—m;aj ndj- (4)

This identity holds equally for bosonic particles and for spins.

An immediate implication of (4) is the following:

v €kerHypr = forallje{l,...,L}: ajy € ker Hp,.
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Spectral gap comparison
Let H,, n > m, be a family of Hamiltonians satisfying the above assumption, and let
P, denote the orthogonal projection onto ker H,,. Define gap H, by

gap H, = ‘”Eﬁﬂl’zz’ (y:lw, Hn1)). (5)
Note that for values of n for which ker H,, = {0}, gap H, is the ground state energy
while if ker H, # {0}, the ground state energy vanishes and gap H, is the spectral gap
above 0. In general, we have H, > (gap H,)(1 — Pp).

Proposition (Inductive criterion)

For Hamiltonians satisfying (4) one has for any n > m:

gap H,
n+1—m

L
gap Hyy1 > n4 1= H(l — Ppi1) Z a}Pnaj(l — P"+1)H . (6)

Jj=1
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Observed qualitative feature of the spectrum: charge gap > neutral gap for systems

with n particles and n ~ L/q. Energies are given by spectrum of the Hamiltonian H,,.
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A combinatorial identity

Na'(fy) - a'(fm)a(gm) - a(gr) = ma'(f)---a'(fm)algm)---a(g1)
£33 [al(h) - al(Fn)algm) -+ alg1)] o

Let H,, denote the restriction H to F,. Then, the identity implies for all n > m:

L
- i
Hpy1 = n+l_m;aanaj. (4)

This identity holds equally for bosonic particles and for spins.

An immediate implication of (4) is the following:

Y €kerHypr = forallje{l,...,L}: ajy € ker Hp,.
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Moreover, if {¢, | @ =1,..., k} denotes an orthonormal basis of ranPp, then

k
Pn — Z |¢a)(¢)a‘
a=1

and
L L k
(1= Prsa) 3 aPaj(L = Posa) = 3 311 = Pria)afé) (1 = Prin)ajdl
=1 Jj=1 a1

the operator norm on the right side agrees with the operator norm of the kL x kL

Gram matrix with entries

G}',a;k,ﬁ — (a}@aa (1 - Pn—H) 8};905)- (7)
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Assumptions on the ground states of H,
We focus on the situation where there is g € N, with g > 2, and g divides L, L = gM,
with M a positive integer, and such that we have for n = M, a unit vector ¢ € ker H,,

with the properties:
1. ¢ is q periodic, i.e.. T9p = ;
2. @ is an eigenvector of U and V;

3. the kernel of H, is spanned by ¢ and its translates:
ker H, = span{p, To,..., T9 1y} (8)

From the commutation relation between T and V, it follows that each T*y is an

eigenvector of V' with a distinct eigenvalue. Hence the set in (8) is an orthonormal

basis.
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Remarkably, the assumption (8) for a fixed n, and L = gn, by itself, implies the

existence of nyax assumed for the family of n-particle Hamiltonians,: npnax = L/q.

Proposition

1. If gn = L, any eigenvalue of H,, is at least q-fold degenerate.

2. The collection of vectors (8) are orthonormal and the ‘orbital” occupation

numbers N; := a}aj satisfy

mjaxm Nip) < (o, Njp) = 1. (9)
j=1

3. Ifn=L/q > q, we have ker H,11 = {0}.

Since Pp11 =0, the matrix elements of the Gram matrix (7) become

Giaik,8 = {3/ %ar a0p)
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In other words: with n = npax, (6) becomes

(n—i— 1— HG(")

gap Hpi1 > ) gap Hp,. (10)

n+1—m
with

6 = ((alpa, alwg)),
where {¢4} is an onb of ker H,.
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Analysis of the Gram matrix
To turn the gap comparison inequality into some thing useful, we need to estimate the

operator norm of the gL x gL Gram matrix:

) 5 =(ala, 308) = 8 kbas — (kP 308} = 8j ks — (Par 3kaj08).

The diagonal elements are bounded by 1.We expect this matrix be diagonally
dominated and we can show this in several cases. In general, it also has a block
structure that allows for a useful norm bound in interesting cases.

In particular, if n itself is also a multiple of g, one observes that the Gram matrix

decomposes as a direct sum of g g X g matrices.
Theorem (Lemm-N-Warzel-Young, arxiv:2410.11645)

For the case L = nq, n = nnmax, if |G| < 2, then

n—1
n+1—m

gap Hpy1 > gap H, > gap H,.
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Generalization to p/q filling fractions for L = /q?

We can consider more general Hamiltonians and more general filling fractions.

my
H= Y Hm™ A= S whokmal ol g L ay

=My lgl---jmél-
16k, b L

ki..

where mp < my and the m-body coefficients WJ km = C are such that all H(™ are

1--Jm
s.a. and satisfy H(™) > 0, for m > my, and the symmetry assumptions.

Theorem (Lemm-N-Warzel-Young, arxiv:2410.11645)

Let L = £q? for some £ > 3, and ny.x = (p/q)L, with p < q relative prime. the charge
gap dominates the neutral gap as follows: for any n > npyax

Nmax
Nmax T 1 — Mo
Mmax — P
Nmax + 1 — mo

gap Hp,oot1 = gap Hp,,.. (fermions)

IV

gap Hnmax+1 gap Hnma.x (bosons)
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Generalization to p/q filling fractions for L = /q?

We can consider more general Hamiltonians and more general filling fractions.

mq
H= Y Hm™  Hm = S whekegl Gl e ek

m=my 1<j1...jm<L
1<k ...km<L

where mp < my and the m-body coefficients ijlj::’” e C are such that all H(™) are

s.a. and satisfy H(™) > 0, for m > my, and the symmetry assumptions.
Theorem (Lemm-N-Warzel-Young, arxiv:2410.11645)

Let L = £q? for some £ > 3, and ny.x = (p/q)L, with p < q relative prime. the charge
gap dominates the neutral gap as follows: for any n > npyax

Nmax )
ap H e ap H fermions
g p Nmax+1 = nmax _|_ 1 . mO g p Nmax ( )
n T

Mmax +1 — mo
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Infinite system gaps. A definition

Consider the CAR algebra A on #?(Z) and suppose w is a thermodynamic limit of
maximally filled states v, € ker H,, for finite system on intervals [1, L] as discussed
above. Suppose the Hamiltonians define a strongly continuous dynamics 7+ on A with

generator 0. Recall, for a states w for which GNS Hamiltonian has a one-dimensional
kernel, the g.s. gap 7y is the largest constant such that
w(A*6(A)) > yw(A*A), for all A with w(A) = 0.
Define two subsets of dom ¢ of as follows:
Dy = {Acdomd | NA=ANw(A)=0,w(A*A) =1}
Di = {A€domd|NA=A(N+1),w(A)=0,w(A"A) = 1}.
In this language, the gap comparison states the following:

i A,QEIM(A* (A)) > mf w(A d(A)).
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Comments and open problems

» To prove charge gap > neutral gap we used remarkably little information about

the Hamiltonians.
» The inequality holds in the thermodynamic limit.

» Next: learn more about ||G||, using its relation to correlation functions of the

ground states.

» Next: use the inductive criterion to prove an absolute lower bound on the gap (as

has been done for the Kac master equation in Carlen-Carvalho-Loss 2003).
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Infinite system gaps. A definition

Consider the CAR algebra A on #?(Z) and suppose w is a thermodynamic limit of
maximally filled states v, € ker H,, for finite system on intervals [1, L] as discussed
above. Suppose the Hamiltonians define a strongly continuous dynamics 7+ on A with

generator 0. Recall, for a states w for which GNS Hamiltonian has a one-dimensional
kernel, the g.s. gap 7y is the largest constant such that
w(A*6(A)) > yw(A*A), for all A with w(A) = 0.
Define two subsets of dom ¢ of as follows:
Dy = {Acdomd | NA=ANw(A)=0w(A*A) =1}
Di = {Ae€domd|NA=A(N+1),w(A) =0,w(A"A) = 1}.

In this language, the gap comparison states the following:

A|€nglw(A* (A)) > mf w(A d(A)).

Pirsa: 25020032 Page 23/23




