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Abstract:

In this talk, we will explore what low-energy experiments on gravitationally mediated entanglement (GME) can reveal about the
quantum nature of gravity. We will analyze the key assumptions necessary to interpret GME experiments as evidence for
quantum aspects of the gravitational interaction and examine how these assumptions influence our conclusions. Additionally, we
will discuss possible modifications to experimental designs aimed at minimizing dependence on assumptions. Then we will
discuss what these experiments in different regimes can and cannot probe about gravity’s quantum nature.
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Two levels of “quantum” fields
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~ Reviewing Classical Field Theory:
Two emitters coupled to a scalar field
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Reviewing Classical Field Theory:
Two emitters coupled to a scalar field

H(t) = Ha(0) + B0 + 5 [ a2 (9606400 + 5 06:(0)

Pr(x) = / dV'Gr(x,x)iY(x) Field Sourced by I-th emitter

Gr(x,x) = Ll (—t=t)+(@x-—2))oEt-1t),
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Reviewing Classical Field Theory:
Two emitters coupled to a scalar field

HE) = B0 + Ho(t) + 5 [ @2 (1900600 + 50 0000(x))
¢i(x) = /dV'GR(X, x')j(x')  Field Sourced by I-th emitter
Gl ) = =30 (~(t — £ + (& — @')?) 0(t — ),

Two pointlike sources on trajectories z;(t) j(x) = A (£)d® (& — z(t))

Hins(t) = %5 | 0t (i (On(¢) Grlza(t),20(t)) + n(E)ia ()G r(an(8) 2a(¢)

/dt Hint(t) — %2/dtdt’uA(t)uB(t’)A(zA(t),ZB(t/))
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Reviewing Classical Field Theory:
Two emitters coupled to a scalar field

/dtHint(t) — %2/dtdt,MA(t)MB(t,)A(ZA(t)aZB(t’))
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What if the emitters are quantum?

P
.
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What if the emitters are quantum?

Py
.

() = (0 + () + [ &2 (h009509 + a3 (0)

39 () = / AV'CrixX)h(X) 50 5
3700 = Mu(0)6® (@ — (D))

/dtﬁint(t) = %/dtdt’ﬂA(t);lB(t’)A(zA(t),ZB(tf))

0 = T exp (—i / dtﬁint(t)) P / At g (£) + O(NY)




\_ | H_o\_(s_r__d__oes th1s compare to QFT __ \

A1) = 5 [ @ (099560 + 03 0)

Pe(x) = / AV'Gr(xX)5u(X)  Gi(x) = Mu()d® (2 — z:(1))

Hin () =A( [2" 00 (7 (0)500-+ (4" 20n () n ()50

0(x), 6(x)| =i E(x.X)
\§ Implements the dynamics and
commutation relations.




How does this compare to QFT

Consider two Unruh-DeWitt detectors

() = xu(1)[ €67 + e 67

Both initially in their ground states

Time evolution

Quantum Field Theory model (with field in vacuum)
Vs
Quantum Controlled model
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These are the results for the quantum and

Quantum (mixed state)

1—L =Ly 0 0 M

. 0 T T
e 0 Ve
M 0 0 0

*

Pa—

L, = N\ /dtdt’\{(f.)\,](f’)f--‘“?“—”’U‘(z[(f)_zj(f’))

M= —)\? /(h‘.(h‘.’\_\(?‘)\“(?‘f)f*mwrf,)' 17 (2

i /‘“‘“’\\(ﬁf)\_;_,.(r’j)f-i”“f’)i .

[}

¢ cases:

1—|Mc[? 00 M

0
0
M

00 0
00 0
00 |Mc|?
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Many Predictions of the theory (as we will see) can be
written in terms of the Wightman function and the Feynn

() state independent
i 1

[1] Advances in Algebraic Quantum Field Theory, edited by R. Brunetti, C. Dappiaggi, K. Fredenhagen, and ]. Yngvason (Springer International Publishing, Cham, 2015)
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Not only perturbative

QFT:

Z(Jay Iy J] = / Db Dify Dy /501 i1 754 8 AV 900 () (0 +7 ()

VA [JA, JB, J] = /DTDADT,’UB eist'_\ eisk'ﬂ exp |i; /dVdV’Jtot(X)AF(X,XI)JtOt (Xf) .

How to obtain the QC model:

J(x) —0
Ar(ox) e %A(x,x’)

Zag [Ja, Js) = / Dy, Def; € %¥1 €*¥s exp [ f AV AV 4 (x) A (%, X )5 (X')

1
2
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These are the results for the quantum and

Quantum (mixed state)

1—-L,—Ly; 0 0 M*

. 0 LD
= 0 £ VRN
M 0 0 0
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Predictions of the two models

Very similar: QC approximates QFT

Except:
- In spacelike separation
- In less-than-twice light crossing time between sources

Notice that both models are relativistic and (spacetime) local!

Very similar: QC approximates QFT
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Predictions of the two models \

A0 = 5 [ @ (099500 + 703 )

e(x) = / AV'Gr(x,X)5u(X)  Gi(x) = Mu(t)8® (2 — z(1))

~

Hin () =A( [4" 0 (7 (0500-+ (4" 20n () n ()50

Notice that both models are relativistic and (spacetime) local!
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Gravity Mediated Entanglement (GME) \




A table-top experiment for QG? \

Observation:

Quantum matter interacts gravitationally!
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A table-top experiment for QG? \

We know that hybrid models are inconsistent:

D. R. Terno,
Inconsistency of quantum—classical dynamics, and what it implies,

Found. Phys. 36, 102 (2006).

C. Barcel6, R. Carballo-Rubio, L. J. Garay, and R. Gomez-Escalante,
Hybrid classical-quantum formulations ask for hybrid notions.
Phys. Rev. A 86, 042120 (2012)

What would we learn from a tabletop quantum gravity
experiment?
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The BMV experiment

A Spin Entanglement Witness for Quantum Gravity

Sougato Bose,! Anupam Mazumdar,? Gavin W. Morley,® Hendrik Ulbricht,* Marko Toros,*
Mauro Paternostro,> Andrew Geraci,® Peter Barker,! M. S. Kim,” and Gerard Milburn™ 8

Loy IR |L2) Ra)

Gravitationally-induced entanglement between two massive particles is sufficient evidence of
quantum effects in gravity

C. Marletto? and V. Vedral @
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1/r Potential can entangle

A )
f
L) |R.) |L‘>|/ |Ry)
1/ 1) 2) 2 qg_ Gm1m2
,",‘.
(t) (1) :f,_(f)\\ (t)
| 2
B(r = 0))1p = ——(IL); + [R)1) —= (L), + |R),)
- 12 2 1 1 \ﬁ 2 2
W= )= S LIy, L (L), + evn|R),) + [R), — (em|L), + |R) )}
=T = — e e LR —_— RL
12 \/Z 1\/2 2 2 ]\/’j 2 2

Bose et al. PRL 119, 240401 (2017)
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1/r Potential can entangle

L)) R Ly | IR
g5 Gmimao

7

If the experiment reveals entanglement between the masses:

1-LOCC does not increase the entanglement between quantum systems.

2-Thus, if the masses interact only gravitationally and get entangled, the
gravitational field which mediates the interaction is going beyond ‘CC’.

Bose et al. PRL 119, 240401 (2017)
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1/r Potential can entangle

A Gm1m2
Gb =

7
1-LOCC does not increase the entanglement between quantum systems.

2-Thus, if the masses interact only gravitationally and get entangled, the
gravitational field which mediates the interaction is going beyond CC".

3-Hence the field cannot be classical since it establishes a quantum channel.

If a third system locally mediates interaction between systems 1 and 2 and 1
and 2 can get entangled, the intermediary system has to be quantum.

Marletto and Vedral, Phys. Rev. D, 102 086012 (2020)
Marletto and Vedral, Phys. Rev. Lett., 119, 240402 (2020)
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1/r Potential can entangle

A Gm1m2
Gb =

P
1-LOCC does not increase the entanglement between quantum systems.

2-Thus, if the masses interact only gravitationally and get entangled, the
gravitational field which mediates the interaction is going beyond CC".

3-Hence the field cannot be classical since it establishes a quantum channel.

If a third system locally mediates interaction between systems 1 and 2 and 1
and 2 can get entangled, the intermediary system has to be quantum.

But is gravity an intermediary system? Am I making a hidden assumption?
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Two notions of locality

Event Locality: Operations happen at events in spacetime,
and do not affect other events which are causally
disconnected from them.
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1/r Potential can entangle

The interaction can be system non-local and yet relativistically local!!

Mass 1 couples to the field and then the field carries quantum information to
mass 2, or otherwise we would have non locality or action-at-a-distance.

This statement assumes much more than Lorentz Invariance!!!

It assumes the existence of local degrees of freedom for the field
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An event local interaction that is not
system local (QC-field)

Consider first weak gravity:

Guv = Nuw + V167G hy,,
W (x) = VATG / AV’ G¥ o5 (%, X )T ' (')

Couple a small mass to it:

03 (x — 2p, (1))
up (V=g

T3 (x) = m; ub, (t)u,, (t)

What about two masses in some quantum superposition as in BMV?
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An event local interaction that is not
system local (QC-field)

Let us prescribe the interaction as associating to each state of the particles the
classical field sourced by each particle undergoing each path.

Hit)= Y, @pp(t) pip2)pips]
p1€{L1,R1}
p2€{L2,R2}
Ur = exp (—i/dt ﬁ;(t)) = Z 2 G B2 |pypy X p1pa|
p€{L1,R1}
p2E{La,R2}

By = [ AVAV'TE 0B s X VTP ()

AH#ve' B (x,x") = (G’ﬁyalﬁl (x,x") + Gim’ﬁf (x, x'))

~ Gm1m2
It recovers the Newtonian interaction in the non-relativistic limit ¢ -

~
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An event local interaction that is not
system local (QC-field)

Let us prescribe the interaction as associating to each state of the particles the
classical field sourced by each particle undergoing each path.

Hi(t) = Z Dp,po () [P1P2)P1P2]

p1€{L1,R1}
p2€{L2,Ra}

Under this evolution the system of two masses evolves to an entangled state

)

+ O(G?).

1 .
NC — 5 SlIl(’H'G‘AL1L2+AR1R2ﬁALlewﬂR1L2

G
— 7 ’AL1L2+AR1R2_AL1R2_AR1L2

Pirsa: 25020029 Page 33/42



Pirsa: 25020029

An event local interaction that is not
system local (QC-field)

This evolution establishes a quantum channel between the masses:
It gets them entangled.

However the field has no quantum degrees of freedom!

Finding entanglement on the masses through their gravitational interaction
Does not mean gravity has local quantum degrees of freedom

The interaction is not system-local. But the interaction is event local:
No signalling

|An interaction establishing a quantum channel does not mean that it is |
| mediated by a quantum system, and can still be event local!
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Comparison with quantum gravity

Consider now the quantization of the gravitational perturbation

Hi(x) = —VaAnG Y Ipifpil T ()b (x)

pi€{L;i,R;}
Put hats on the metric perturbation.

Coupling the stress energy tensor of the particles to
the quantum gravitational field

No matter your quantum gravity, one could expect
that this would be its weak limit.

Same setup but now gravity is locally quantized and
starts in the vacuum in the far past
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Comparison with quantum gravity

( )=-v4 Z i Xpi T“y(x) v(x)

pi€{Li,Ri}

NG — 7TG (‘GL1L2+ GRl RQ_GLl Ro— GRlLQ

—E) +O(C?)

The two Masses get entangled

Gpipy = / AVAV'TE ()G pwar g (%X VTP (X
= (1T (b (9her () 10

1

G,u,ua’ﬁ’ (XJ X’) - _§ uva’,@’( ) a5 HHVCX’B’ (X X )

Hyuvorg (% X') = (0] {hyu (%), s (<))} [0)

The field also gets entangled with the masses

Gpwafﬁf (X, X!)

Pirsa: 25020029 Page 36/42



Comparison with quantum gravity

With local quantum degrees of freedom

Hi(x) = —vV4ArG D pi)pil T () Ay (x)

pi€{L;,R;}

NG:frrG(’GLleJrGRle—GLle—GRILz —L£) +0(G?)
With quantum-controlled classical gravity
Hit)= )  ®pp() pp)poipl
p1€{L1,R1}
p2€{L2,Rz}
Ne = 7‘AL]_L2+AR132—AL1R2—AR]Lz + O(G )
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Comparison with quantum gravity

Big difference: Entanglement when spacelike separated

When space like separation we have entanglement harvesting
From the gravitational field[1]

Also differences in short-time dynamics

However the current proposals work with regimes where
the masses are well within causal contact
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What the current proposals for GIE can tell

The experiment does:

-Prove that semiclassical gravity fails to describe the experiment
-Prove that gravity can set up a quantum channel between masses

The experiment does not:

-Prove that Gravity has local quantum degrees of freedom

In absence of further hypotheses

The experiment can be improved to actually test it
without extra assumptions
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Summary

There are regimes of GME experiments that are agnostic about
the existence of local degrees of freedom of gravity without
further hypotheses.

Most experimental efforts seem to be focused on those regimes.

However there are regimes for which the experiment does
not need to rely on that hypothesis.

Thank you!

Page 40/42



A thought

The fact that the field does not have sharp values in general,
That is “knowledge of the (quantum) state of the world only
gives a probabilistic prediction about its value”. Does happen in
the QC-model.
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Two notions of locality

Event Locality: Operations happen at events in spacetime,
and do not affect other events which are causally
disconnected from them.

System locality: (Specific to QM) Operations that
independently affect two quantum systems must be separable

(AJAB — ﬁA®(AIB
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