Title: OGRePy and Time Travel Paradoxes Speakers: Barak Shoshany Collection/Series: Cosmology and Gravitation Subject: Cosmology Date: February 04, 2025 - 11:00 AM URL: https://pirsa.org/25020024

Abstract:

Part I: OGRePy: Object-Oriented General Relativity in Python

I will present a detailed introduction to my new Python package, OGRePy: (O)bject-Oriented (G)eneral (Re)lativity for (Py)thon, a port of my popular Mathematica package OGRe, which is used by many researchers in general relativity and related areas. I will demonstrate the package's usage and features, including its ability to manipulate tensors of arbitrary rank using an intuitive interface, and calculate arbitrary tensor formulas involving any combination of addition, multiplication, trace, contraction, and partial and covariant derivatives - while automatically figuring out the proper index configuration and coordinate system to use for each tensor, eliminating user error.

Part II: Time Travel Paradoxes and Entangled Timelines

If time travel is possible, it seems that it would inevitably lead to paradoxes, indicating an internal inconsistency in our current theories of nature. Can these paradoxes be resolved by new laws of physics, or perhaps even existing ones? I will first review the different types of time travel paradoxes and their proposed resolutions. Then I will present the results of my 3 recent papers (1911.11590, 2110.02448, 2303.07635) discussing different aspects of time travel paradoxes from the perspectives of both general relativity and quantum mechanics. I will argue that generic time travel paradoxes can only be resolved using the concept of parallel timelines, and suggest possibilities for how such timelines may manifest themselves.

×	File Edit	Selection Vi	ew Go Run	$\cdots \leftarrow$	\rightarrow		, ⊂ Untitl	ed-1 - Visual Stud	io Code		8 ~		0: 🔲 🗖		_	ð	×
Ð	🕒 Untitleo	1-1														Ξ	
¢																	
с С Г																	
P																	
5								I									
e So																	
å																	
Ē	PROBLEM	S OUTPUT	DEBUG CONSOI	E TERMINAL	PORTS	SPELL CHECKEF	R COMMENT	S					≥ p	wsh 🕂	~	<u>ش</u>	×
 8	Requi ges Requi te-pa Requi te-pa Requi	rement from py rement ackages rement ackages	already s thon-date already s (from sta already s (from sta already s	atisfieo eutil>=2. atisfieo ack_data- ack_data- ack_data- ack_data- satisfieo	l: six>= 8.2->ju l: execu >ipytho l: astto >ipytho l: pure-	1.5 in pyter-c ting>=1 n>=7.23 kens>=2 n>=7.23 eval in	c:\users lient>=0 .2.0 in .1->ipyl .1.0 in .1->ipyl .1->ipyl	s\barak\a 5.1.12->i c:\users <ernel>=6 c:\users <ernel>=6 rs\barak\</ernel></ernel>	ppdata\lo pykernel: \barak\a .9.2->OGI \barak\a .9.2->OGI appdata\:	ocal\pro >=6.9.2-3 ppdata\lo RePy) (2 ppdata\lo RePy) (3 local\pro	grams\py >OGRePy) ocal\pro .2.0) ocal\pro .0.0) ograms\p	thon\py (1.17. grams\p grams\p ython\p	thon313 0) ython\p ython\p ython31	\lib\ ythor ythor 3\lit	\site 1313\ 1313\ 1313\ 0\sit	-pac lib\ lib\ e-pa	ka si si ck
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ages �,>S C	(from s	tack_data barak>	->ipytho	on>=7.23	.1->ipy	kernel>	=6.9.2->0	GRePy) (0	0.2.3)							
× .	🖾 🔗 Launchr	ad 🗵 0 🛆 0	• ∰ 0 ∰ ·	V- 17.52% ····	8.32/63.68 GB						Ln 1,	Col 1 Space	es: 4 UTF-8	LF {}	Plain Tex	xt 🗞	Ц.

×	File Ed	lit Selection View Go Run $\cdots$ $\leftarrow$ $ o$	∽ • Untitled-1.ipynb - Visual Studio Code	&∽
ſŊ	🕒 Ur	titled-1 🔅 Untitled-1.ipynb •		\$ II ···
Ē	<b>∻</b> , G	enerate + Code + Markdown   ⊳ Run All 🧐	D Restart 🗮 Clear All Outputs   🗮 Outline \cdots	<u> </u> Python 3.13.1
<del>ک</del>	[1]	import OGRePy as Ţ ✓		Python
Q 6		OGRePy: An <u>O</u> bject-Oriented <u>G</u> eneral <u>Re</u> lativit By Barak Shoshany (baraksh@gmail.com) (bar v1.3.0 (2025-02-04)	y Package for <u>Py</u> thon aksh.com)	
5		GitHub repository: https://github.com/bshosl Documentation: .ipynb, .pdf, .html	aany/OGRePy	
ц,		OGRePy: You have the latest version of the packa	ige.	
₽ ¢	$\triangleright$ ~			
				Python
Ē				
8				
<b>2023</b>				
×	න් රේ Lau	inchpad 🛞 0 🛆 1 🖗 0 🔥 사 16.48% … 18.63,	63.68 GB	Spaces: 4 LF Cell 2 of 2 🚱 🗘 {}

⋪	File E	dit Selection View Go Run $\cdots$ $\leftarrow$ $ ightarrow$		₿~ □□□□−	D	×
ſ	🕒 Ur	titled-1 📁 Untitled-1.ipynb •			ŝ	□ …
	�, G	enerate 🕂 Code 🕂 Markdown   ⊳ Run All	🕽 Restart 🛛 ☴ Clear All Outputs   ﷺ Outline \cdots	4	] Pytho	on 3.13.1
Ę						
£,	[1]	import OGRePy as Ţ ✓				Python
$\mathcal{P}$		OGRePy: An <u>O</u> bject-Oriented <u>G</u> eneral <u>Re</u> lativi By Barak Shoshany (baraksh@gmail.com) (ba	ty Package for <u>Py</u> thon raksh.com)			
5		V1.3.0 (2025-02-04) GitHub repository: https://github.com/bshos Documentation: .ipynb, .pdf, .html	hany/OGRePy			
မိုဝ		<b>OGRePy</b> : You have the latest version of the pack	age.			
¢				E	3 1	<u>له الم</u>
-0	$\triangleright$ $\checkmark$	🔍 from OGRePy.abc import ţ, ỵ, ỵ, ẓ	I			
<u>H</u> 2						Python
Ē						
0						
8						
£633						
*	න් Lau	unchpad ⊗ 0 ⚠ 5 🖗 0 🚓 → 9.57% ···· 18.52/	63.68 GB	Spaces: 4 LF Cell 2 of 2	8	Q {}

\$	File Ed	it Selection View Go Run $\cdots \leftarrow \rightarrow$ $\mathcal{P}$ $\bullet$ Untitled-1.ipynb - Visual Studio Code $\mathfrak{B}$ $\sim$		- 6	×
ſ	🕒 Un	titled-1 🔅 Untitled-1.ipynb •		\$	
_	🗞 Ge	enerate + Code + Markdown   ▷ Run All う Restart ☴ Clear All Outputs   ☷ Outline …		<u> I</u> Pyth	ion 3.13.1
Ē	[5]	$\sqrt{0.0s}$			Python
¢L\$		$egin{pmatrix} t & r &  heta & \phi \end{pmatrix}$			
ρ				8	<u>ش</u>
$\bigcirc$	$\triangleright$ ~	Minkowski = T.Mefiric(			
000		<pre>coords=Car class Metric( components *, coords: Coordinates, components: list[Any]   NDimArray   Matrix.</pre>			
ǽ>	[6]	<pre>✓ 0.0s symbol: str   Symbol = "g"</pre>	L		Python
	[7]	Minkowski Parameters:			Dithon
Ľ <u></u>		<ul> <li>coords : An OGRePy Coordinates object specifying the coordinate system of the representation of the initialization components. Will also be designated the default coordinate system of the metric.</li> </ul>			Fython
		<ul> <li>components : The components with which to initialize the metric. Can be a list, a SymPy Array object, or a SymPy</li> <li>Matrix object</li> </ul>			
		$\left. \eta_{\mu u}  ight _{(t,x,y,z)} = \left( egin{array}{cccc} 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}  ight)$			
8					
					Python
×	🕼 లి Lau	nchpad 🛞 0 🖄 0 🙀 0 🚓	Spaces: 4 LF Cell 6	5 of 8 😁	Q {}





<	File Ed	it Selection View Go	Run $\cdots$ $\leftarrow$ $\rightarrow$	ho $ullet$ Untitled-1.ipynb - Visual Studio Code	<b>8</b> ~		- 0	×
ſ	🕒 Un	titled-1 🔅 Untitled-1.i	pynb •				÷	II ···· II
_	🗞 Ge	enerate + Code + Marl	kdown   🕽 Run All 🏾 🖱 Res	start 🗮 Clear All Outputs   🗮 Outline \cdots			🚊 Pythor	า 3.13.1
L () () () ()	[15]	Minkowski.volume_ ✓ 0.0s -1 Schwarzschild.vol	<pre>element_squared() class Tensor(     *,     metric: Metric,     indices: IndexConf     coords: Coordinate</pre>	Figuration,			Ρ	ython
₽ ₽	[16] 	$ ightarrow $ 0.0s $-r^4\sin^2\left( heta ight)$	<pre>components: list[4 symbol: str   Symb simplify: bool = F )</pre>	ny]   NDimArray   Matrix, pol = r"\square", alse			P	ython
_ <u></u>		<pre>from OGRePy.abc i FourVelocity = T.     metric=Minkow     coords=Cartes     indices=(1,),     components=T. }</pre>	Construct a new tensor obj Parameters: • metric : An OGRePv I Jensor( ski, ian, s.Array([1, v, 0, 0]) /	ect. Metric object specifying the metric which will be used to raise T.s.sqrt(arg=1 - v**2),	and lower indices for this			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
553 S								ython
× 8	စ္ခ်ိဳ 🎖 Lau	nchpad 🛞 0 🛆 0 🗐 👷	♪ -^- 9.99% ··· 18.85/63.68 (	;B	S	Spaces: 4 LF Cell 17 o	f 17 😁 🕻	{} {







\$	File Ed	lit Selection View Go Run $\cdots$ $\leftarrow$ $ o$ [	🔎 ● Untitled-1.ipynb - Visual Studio Code	<b>8</b> ~	
ſ	🕒 Un	tittled-1 🔁 Untitled-1.ipynb •			₩
	🗞 Ge	enerate + Code + Markdown   ⊳ Run All 🤊	Restart $\equiv$ Clear All Outputs $\mid$ $\equiv$ Outline $\cdots$		💄 Python 3.13.1
و مل	[27]	Minkowski.info() ✓ 0.0s			Python
		<ul> <li>Name: Minkowski</li> <li>Class: Metric</li> <li>Symbol: η_{μν}</li> <li>Rank: 2</li> <li>Dimensions: 4</li> <li>Default Coordinates: Cartesian</li> <li>Default Indices: (-1, -1)</li> <li>Associated Metric For: FourVelocity, Petron</li> </ul>	erfectFluid		
	[28]	+PerfectFluid ✓ 0.0s			Python
		• Name: PerfectFluid • Class: Tensor • Symbol: $T^{\mu\nu}$ • Rank: 2 • Dimensions: 4 • Default Coordinates: Cartesian • Default Indices: (1, 1) • Metric: Minkowski			
8	$\triangleright$ ~				
£633					Python
×	ත් Lau	unchpad 🛞 0 🖄 0 😫 0 🚖 🔸 11.00% … 18.87/6	3.68 GB		Spaces: 4 LF Cell 28 of 28 🔀 🗘 {}







\$	File Edit Selection View Go Run $\cdots$ $\leftarrow$ $ o$		<b>8</b> ~	
ſ	Untitled-1 Untitled-1.ipynb			₩
Ē	🍫 Generate + Code + Markdown   □ Interrupt	$\mathfrak{O}$ Restart $\equiv$ Clear All Outputs $\mathcal{G}$ Go To $\mid$ $\equiv$ Outline $\cdots$		$egin{array}{c} \underline{ eta} \  ext{Python 3.13.1} \ \partial_t \Gamma^{ au}{}_{rt} - \partial_r \Gamma^{ au}{}_{tt} + \Gamma^{ au}{}_{t\mu} \Gamma^{\mu}{}_{rt} \end{array}$
<b>ک</b> م ری		${\partial}_t {\Gamma^ heta}_{ heta t} -$	$\partial_ heta \Gamma^ heta_{tt} + \Gamma^ heta_{t\mu} \Gamma^\mu_{\  heta t} - \Gamma^ heta$	$\partial_{ heta\mu}\Gamma^{\mu}_{\ \ tt}=\partial_t\Gamma^{\phi}_{\ \ \phi t}-\partial_{\phi}\Gamma^{\phi}_{\ \ tt}+\Gamma^{\phi}_{\ \ t\mu}\Gamma^{\mu}_{\ \ \phi t}$
Ď				${\partial}_r {\Gamma^t}_{tr} - {\partial}_t {\Gamma^t}_{rr} + {\Gamma^t}_{r\mu} {\Gamma^\mu}_{tr}$
Ś			-0 -0 -0 -0	$\partial_r \Gamma^r{}_{tt} - \partial_t \Gamma^r{}_{rt} + \Gamma^r{}_{r\mu} \Gamma^_{tt}$
e G		$\partial_r \Gamma^{ u}{}_{ heta r} - \partial_ heta$	$\Gamma^{\sigma}{}_{rr}+\Gamma^{\sigma}{}_{r\mu}\Gamma^{\mu}{}_{ heta r}-\Gamma^{\sigma}{}_{ heta \mu}$	$\Gamma^{\mu}{}_{rr} = \partial_r \Gamma^{\phi}{}_{\phi r} - \partial_{\phi} \Gamma^{\phi}{}_{rr} + \Gamma^{\phi}{}_{r\mu} \Gamma^{\mu}{}_{\phi r} \cdot $
¢ ₽		$\partial_ heta \Gamma^{ heta}_{\ rr} - \partial_r$	$egin{aligned} & \partial_t \Gamma^{*}_{ heta t} + \Gamma^{*}_{ heta \mu} \Gamma^{\mu}_{ heta t} - \Gamma^{*} \ & \Gamma^{ heta}_{ heta r} + \Gamma^{ heta}_{ heta \mu} \Gamma^{\mu}_{ heta r} - \Gamma^{ heta}_{ heta \mu} \end{aligned}$	$_{t\mu}\Gamma^{\rho}{}_{\theta t} = \partial_{\phi}\Gamma^{\phi}{}_{rr} - \partial_{r}\Gamma^{\phi}{}_{\phi r} + \Gamma^{\phi}{}_{\phi\mu}\Gamma^{\mu}{}_{rr} + \Gamma^{\phi}{}_{\mu}\Gamma^{\mu}{}_{rr} + \Gamma^{\phi}{}_{rr} + \Gamma^{\phi}{}_{rr}$
		$\partial_ heta \Gamma^ heta_{\phi\phi} - \partial_\phi \Gamma^ heta_ heta$	${}_{ heta \phi} + \Gamma^{ heta}{}_{ heta \mu} \Gamma^{\mu}{}_{\phi \phi} - \Gamma^{ heta}{}_{\phi \mu} \Gamma^{\mu}{}_{\phi \phi}$	${}^{\mu}_{ heta\phi}=-\partial_{\phi}\Gamma^{ heta}{}_{ heta\phi}-\partial_{ heta}\Gamma^{ heta}{}_{\phi\phi}+\Gamma^{ heta}{}_{\phi\mu}\Gamma^{\mu}{}_{ heta\phi}+\Gamma^{ar{ heta}}{}_{\phi\mu}\Gamma^{ar{ heta}}{}_{ar{ heta}\phi}+\Gamma^{ar{ heta}}{}_{ar{ heta}}$
		$\partial_ heta \Gamma^{\phi}{}_{\phi  heta} - \partial_\phi \Gamma^{\phi}{}_{ heta}$	$_{ heta heta} + \Gamma^{\phi}{}_{ heta\mu} \Gamma^{\mu}{}_{\phi heta} - \Gamma^{\phi}{}_{\phi\mu} \Gamma^{\mu}{}_{\phi\mu}$	${}^{\mu}_{ heta heta} = -\partial_{\phi} \Gamma^{\phi}_{ heta heta} - \partial_{ heta} \Gamma^{\phi}_{ heta heta} + \Gamma^{\phi}_{ heta\mu} \Gamma^{\mu}_{ heta heta} + \Gamma^{\phi}_{ heta\mu} \Gamma^{\mu}_{ heta heta heta} + \Gamma^{\phi}_{ heta heta heta heta heta heta heta heta$
	Schwarzschild.riemann(rho, sigma, m	nu, nu) @ Schwarzschild.riemann(rho, sigma, mu, nu)		D ··· D
$\bigcirc$				Fython
				Python
×.	ぽぷ Launchpad ⊗ 0 🛆 0 🖗 0 🎝 🚜 10.69% … 19.1-	4/63.68 GB		Spaces: 4 LF Cell 41 of 41 🔀 🗘 {}



# Time Travel Paradoxes and Entangled Timelines

Barak Shoshany Assistant Professor of Physics Brock University, St. Catharines, Ontario, Canada

#### Motivation

- Time travel may be possible
  - GR solutions with CTCs/CCCs
  - FTL: wormholes/warp drives → time travel?
- If possible: paradoxes?
  - Consistency: grandfather
  - Bootstrap: time loops
  - Inconsistent with known physics
- Proposed solutions
  - Hawking chronology protection: boring
  - Novikov self-consistency: problematic
  - Parallel timelines: solve all paradoxes, but no concrete models

# Parallel timeline models

- General relativity: branching spacetimes
  - Non-Hausdorff manifold? (Hausdorff = points have disjoint neighborhoods)
  - Non-locally-Euclidean? (Locally Euclidean = every point has a neighborhood homeomorphic to  $\mathbb{R}^n$ )
  - Mathematically intractable, no branching mechanism
- Quantum mechanics
  - Deutsch D-CTCs: Everett / "many-worlds" interpretation (MWI)
  - Uses reduced/mixed states, destroys information about timelines
  - Our new model: "entangled timelines" (E-CTCs) [with Zipora Stober]

# The generic paradox

- Independent of geometry/topology or specific physical system
- Time machine  $\mathcal{H}_{CTC}$ : occupation number
  - |0> = empty (time travel has not occurred)
  - |1> = not empty (time travel has occurred)
- External system  $\mathcal{H}_{ex}$  (human, billiard ball, particle): control bit
  - $|0\rangle =$ won't go in (time travel will not occur)
  - $|1\rangle$  = will go in (time travel will occur)
- Logical, not physical states

# The generic paradox

- $|\Psi(t)\rangle = \mathcal{H}_{\text{CTC}} \otimes \mathcal{H}_{\text{ex}}$
- True consistency paradox: time travel iff no time travel
- Cyclic
- Novikov does not apply; no way to make this consistent

Time	State/Event
t = 0	$ 0 angle\otimes 1 angle$
C	Nothing happens
t = 1	$ 0 angle\otimes 1 angle$
6	Time travel occurs
t = 0	$ 1 angle\otimes 1 angle$
Ċ	Time travel is prevented
t = 1	$ 1 angle\otimes 0 angle$
6	Time travel does not occur
t = 0	$ 0 angle\otimes 1 angle$

5

#### Alice and the bomb

- At t = 1, Alice puts bomb inside time machine, sends to t = 0
- At t = 0, Alice opens the time machine door and is killed
- Now Alice cannot send bomb at t = 1, so she's alive at t = 0
- Classic consistency paradox
- Macroscopic: cannot be precise, issues of free will, etc...
- Treat Alice's states as equivalence class of states with same macroscopic behavior

### Alice and the bomb

- Formulate using generic paradox.
- For  $\mathcal{H}_{CTC}$ : (time machine)
  - $|0\rangle \equiv |\text{empty}\rangle$
  - $|1\rangle \equiv |bomb\rangle$
- For  $\mathcal{H}_{ex}$ : (Alice)
  - $|0\rangle \equiv |\text{dead}\rangle$
  - $|1\rangle \equiv |alive\rangle$

Time	State/Event		
t = 0	$ empty\rangle \otimes  alive\rangle$		
C	Nothing happens		
t = 1	$ empty\rangle \otimes  alive\rangle$		
6	Alice sends a bomb back in time		
t = 0	$ bomb\rangle \otimes  alive\rangle$		
G	Bomb explodes, Alice dies		
t = 1	$ bomb\rangle \otimes  dead\rangle$		
6	Dead Alice cannot send a bomb		
t = 0	$ empty\rangle \otimes  alive\rangle$		

7

#### Particle annihilation

- Microscopic (simpler)
- For  $\mathcal{H}_{CTC}$ : (time machine)
  - $|0\rangle \equiv |\text{empty}\rangle$
  - $|1\rangle \equiv |\text{particle}\rangle$
- For  $\mathcal{H}_{ex}$ : (particle)
  - $|0\rangle \equiv |annihilated\rangle$
  - $|1\rangle \equiv |\text{not annihilated}\rangle$

Time	State/Event		
t = 0	$ empty angle\otimes not annihilated angle$		
ſ	Nothing happens		
t = 1	$ empty angle\otimes not annihilated angle$		
6	Particle goes into time machine		
t = 0	$ $ particle $\rangle \otimes  $ not annihilated $ angle$		
ſ	Past and future particles annihilate		
t = 1	$ $ particle $\rangle \otimes  $ annihilated $\rangle$		
6	Particle doesn't go into time machine		
t = 0	$ empty angle\otimes not annihilated angle$		

Note: This means a particle has traveled through, not that it still exists

### Classical timelines: generic

Time	Timeline $h = 0$	Timeline $h = 1$
t = 0	$ 0\rangle \otimes  1\rangle$	$ 1\rangle \otimes  1\rangle$
G	Nothing happens	Time travel is prevented
t = 1	$ 0 angle\otimes 1 angle$	$ 1\rangle\otimes 0\rangle$
6	Time travel occurs	Time travel does not occur

Note:  $\mathcal{H}_{CTC}$  state  $|0\rangle$  or  $|1\rangle$  indicates the timeline

#### Classical timelines: macroscopic

Time	Timeline $h = 0$	Timeline $h = 1$
t = 0	$ empty\rangle \otimes  alive\rangle$	$ bomb\rangle \otimes  alive\rangle$
C	Nothing happens	Bomb explodes, Alice dies
t = 1	$ empty\rangle \otimes  alive\rangle$	$ bomb\rangle \otimes  dead\rangle$
6	Alice sends a bomb back in time	Dead Alice cannot send a bomb

# Classical timelines: microscopic

Time	Timeline $h = 0$	Timeline $h = 1$
t = 0	$ empty angle\otimes not annihilated angle$	$ particle\rangle \otimes  not annihilated\rangle$
$\odot$	Nothing happens	Past and future particles annihilate
t = 1	$ empty angle \otimes  not annihilated angle$	$ $ particle $\rangle \otimes  $ annihilated $\rangle$
6	Particle goes into time machine	Particle doesn't go into time machine

### Quantum superposition

- $\mathcal{H}_{ex}$  always has initial condition  $|1\rangle$ , so no superposition at t = 0
- But  $\mathcal{H}_{CTC}$  can be in superposition:  $|\Psi(0)\rangle = (\alpha|0\rangle + \beta|1\rangle) \otimes |1\rangle, \qquad |\alpha|^2 + |\beta|^2 = 1$
- Unitary evolution operator *U* from t = 0 to t = 1:  $U(|0\rangle \otimes |1\rangle) = |0\rangle \otimes |1\rangle, \quad U(|1\rangle \otimes |1\rangle) = |1\rangle \otimes |0\rangle$
- Just CNOT gate:

$$U(|x\rangle \otimes |y\rangle) = |x\rangle \otimes |x + y\rangle$$

 $\begin{array}{l} (x, y \in \mathbb{Z}_2 \text{ and } \dotplus \text{ is addition mod } 2) \\ |\Psi(1)\rangle = U|\Psi(0)\rangle = \alpha|0\rangle \otimes |1\rangle + \beta|1\rangle \otimes |0\rangle \end{array}$ 

• State became entangled!

#### Quantum superposition

• Define timeline correlation operator *T* between *t* = 1 and *t* = 0 at different *h*:

 $T(|x\rangle \otimes |y\rangle) = |y\rangle \otimes |1\rangle$ 

- Not unitary; lost info about  $|x\rangle$ , as it does not affect time travel
- Not evolution; just correlation  $T|\Psi(1)\rangle = \alpha |1\rangle \otimes |1\rangle + \beta |0\rangle \otimes |1\rangle$
- Compare to initial state:

 $|\Psi(0)\rangle = \alpha |0\rangle \otimes |1\rangle + \beta |1\rangle \otimes |1\rangle$ 

• So  $\alpha = \beta = 1/\sqrt{2}$  (up to phase)

#### **Collapse** interpretation

• State at t = 1:

$$\Psi(1)\rangle = \frac{1}{\sqrt{2}}(|0\rangle \otimes |1\rangle + |1\rangle \otimes |0\rangle)$$

- Collapses to  $|0\rangle \otimes |1\rangle$  or  $|1\rangle \otimes |0\rangle$  with 50% probability
- Correlates with either  $|1\rangle \otimes |1\rangle$  or  $|0\rangle \otimes |1\rangle$  at t = 0
- Collapse will destroy superposition, so paradox reappears
- Quantum superposition solution doesn't work in collapse models!

#### Many-worlds interpretation

• Alice has a qubit:

$$|\text{qubit}\rangle = a|0\rangle + b|1\rangle$$

- Measurement: collapses to 0 or 1, **non-unitary** evolution
- Solution: consider Alice's state too  $|\Psi(0)\rangle = (a|0\rangle + b|1\rangle) \otimes |Alice\rangle$  $|\Psi(1)\rangle = a|0\rangle \otimes |Alice \text{ saw } 0\rangle + b|1\rangle \otimes |Alice \text{ saw } 1\rangle$
- Unitary evolution (similar to CNOT gate)
- MWI = "unmodified" (purely unitary) QM

# Entangled worlds

• Recall:

 $|\Psi(1)\rangle = a|0\rangle \otimes |Alice \operatorname{saw} 0\rangle + b|1\rangle \otimes |Alice \operatorname{saw} 1\rangle$ 

- Alice and qubit are now entangled; Alice "branches" into two
- Each Alice sees "collapse" from her own perspective
- Superposition ≠ measurement outcomes or knowledge
- Interpret as multiplicity of "worlds"
- Not physically distinct universes! Just 2 different terms in universal quantum state

# Spreading of branches

- Consider Bob. Before measurement:  $|\Phi(0)\rangle = (a|0\rangle + b|1\rangle) \otimes |Alice\rangle \otimes |Bob\rangle$
- Alice measures:

 $|\Phi(1)\rangle = (a|0\rangle \otimes |Alice \operatorname{saw} 0\rangle + b|1\rangle \otimes |Alice \operatorname{saw} 1\rangle) \otimes |Bob\rangle$ 

- Alice tells Bob what she measured:  $|\Phi(2)\rangle = a|0\rangle \otimes |Alice \text{ saw } 0\rangle \otimes |Bob \text{ heard } 0\rangle$  $+b|1\rangle \otimes |Alice \text{ saw } 1\rangle) \otimes |Bob \text{ heard } 1\rangle$
- All 3 systems now entangled; branching spread further
- At  $t \to \infty$  branching will spread to the entire universe (causal future)
- Branching is not global; it's local and spreads causally

#### **Common misconceptions**

- Misconception 1: branching happens upon measurement
- Correction: branching happens upon interaction between any two systems (e.g. Alice tells Bob the result)
- **Misconception 2:** branching instantaneously creates entire new parallel universes from scratch
- Correction: branching is just gradual and causal spreading of entanglement to more systems within a single universe
- Better name for MWI: "entangled worlds" or "entangled histories"?

# Entangled timelines

• Back to time travel. At t = 0, state is separable:

$$|\Psi(0)\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes |1\rangle$$

- Time machine ( $\mathcal{H}_{\rm CTC})$  has 2 timelines; external system ( $\mathcal{H}_{\rm ex})$  has only 1 timeline
- At t = 1, state is entangled:

$$|\Psi(1)\rangle = \frac{1}{\sqrt{2}}(|0\rangle \otimes |1\rangle + |1\rangle \otimes |0\rangle)$$

- Both systems have 2 timelines
- Systems entangled; can't talk about one without the other, so both share the same timelines

# Spreading timelines

- Timelines spread locally like branches in MWI
- Macroscopic: Bob opens door to lab, finds Alice alive or dead
- Microscopic: detector detects products of annihilation or not
- "Parallel timelines" or "parallel universes" are just local branching
- Start by interacting with time machine, then spread out

### Conclusions

- QM with the MWI provides a simple and natural way to resolve time travel paradoxes
- The abstract generic paradox qubit model can be mapped onto more complicated macroscopic/microscopic models
- No need to worry about mechanisms for creating new physically distinct universes
- There is only one universe; timelines are emergent structures resulting from entanglement between systems
- Timelines propagate locally, gradually, and causally

#### References

- Barak Shoshany, "Lectures on Faster-Than-Light Travel and Time Travel", <u>arXiv:1907.04178</u>
- Jacob Hauser and Barak Shoshany, "Time Travel Paradoxes and Multiple Histories", <u>arXiv:1911.11590</u>
- Barak Shoshany and Jared Wogan, "Wormhole Time Machines and Multiple Histories", <u>arXiv:2110.02448</u>
- Barak Shoshany and Ben Snodgrass, "Warp Drives and Closed Timelike Curves", <u>arXiv:2309.10072</u>
- Barak Shoshany and Zipora Stober, "Time Travel Paradoxes and Entangled Timelines", <u>arXiv:2303.07635</u>