Title: Lecture - Quantum Foundations, PHYS 639

Speakers: Lucien Hardy

Collection/Series: Quantum Foundations (Elective), PHYS 639, January 6 - February 5, 2025

Subject: Quantum Foundations

Date: February 03, 2025 - 11:30 AM

URL: https://pirsa.org/25020004

Pirsa: 25020004 Page 1/44

Generalized noncontextuality:

what parts of quantum theory are genuinely nonclassical?

David Schmid

Pirsa: 25020004 Page 2/44

We all believe that quantum theory is weird and can't be explained by "any classical theory".

Pirsa: 25020004 Page 3/44

Teleportation?

Remote steering?

No-cloning?

Entanglement?

Wave-particle duality?

Nonlocality?

Quantum interference?

Coherent superposition?

Uncertainty relations?

Pirsa: 25020004 Page 4/44

2

Classically explainable!

- -noncommutativity
- -complementarity
- -interference
- -no-cloning
- -teleportation
- -dense coding
- -entanglement
- -remote steering
- -quantum eraser
- -mmts must disturb
- -ambiguity of mixtures
- -no perfect state discr.

. . .

(Spekkens toy theory)

Genuinely nonclassical

- -contextuality
- -computational
- speedups
- -nonlocality

Pirsa: 25020004 Page 5/44

We need a principled way of dividing phenomena into those which can be "explained classically", and those which are rigorous proofs of nonclassicality.

Pirsa: 25020004 Page 6/44

What is needed to witness nonlocality

particular causal structure two or more systems entanglement incompatible mmts freedom of choice highly efficient detectors space-like separation

What is needed to witness contextuality

none of the above are needed

Pirsa: 25020004 Page 7/44

What we want in a notion of nonclassicality

Subject to direct experimental test

Constitutes a resource

Applicable to a broad range of physical scenarios

Nonlocality

 \checkmark

Contextuality

computation metrolo communication cloning cryptography state dis

metrology cloning state discrimination

Pirsa: 25020004 Page 8/44

B

Don't need:

any particular causal structure multiple systems entanglement incompatible measurements freedom of choice highly efficient detectors space-like separation

Like in a Bell test, one doesn't need:

validity of quantum theory determinism pure states projective mmts

arxiv:1505.06244

Pirsa: 25020004 Page 9/44 Observed facts

Operational theory

Ontological model of an operational theory

Hypothesized explanations

 $\lambda \in \Lambda$ Ontic state space

The ontic state fully describes the properties possessed by a system at a given time:

-its position, momentum, mass, charge, color...

Outcomes of measurements just reveal something about these properties $\tilde{\lambda}$ causally mediates between P and M

15

Pirsa: 25020004 Page 10/44

Observed facts

Operational theory

Ontological model of an operational theory

Hypothesized explanations

 $\lambda \in \Lambda$ Ontic state space

epistemic state
$$P \leftrightarrow \mu(\lambda|P)$$
 $M \leftarrow A$

$$p(X|M,P) = \sum_{\lambda} \xi(X|M,\lambda) \mu(\lambda|P)$$

arXiv:0706.2661

B

16

Pirsa: 25020004

An ontological model of an operational theory is noncontextual if

experimental procedures which always lead to the same observational data

identical representations in the ontological model

arXiv:0406166

17

Pirsa: 25020004 Page 12/44

Noncontextuality for preparations

4.0

Pirsa: 25020004 Page 13/44

Pirsa: 25020004 Page 14/44

Quantum example

Difference of "context"

$$\frac{1}{2}I = \frac{1}{2}|0\rangle\langle 0| + \frac{1}{2}|1\rangle\langle 1|$$
$$= \frac{1}{2}|+\rangle\langle +|+\frac{1}{2}|-\rangle\langle -|$$

04

Pirsa: 25020004

B

operational equivalence same density operator

Page 16/44 Pirsa: 25020004

Quantum example

Difference of "context"

21

Pirsa: 25020004 Page 17/44

representation of each preparation **does** depend on the context

Pirsa: 25020004 Page 18/44

0

Preparation noncontextual model

Preparation contextual model

20

Pirsa: 25020004 Page 19/44

(a) A preparation (Spekkens toy theory)

(b) A preparation contextual model of these (Kochen-Specker model)

noncontextual model of these

(b)

(a)

 $\mu_{|0\rangle}(\lambda)$

B

Page 20/44 Pirsa: 25020004

Example from quantum theory

$$|\psi_2\rangle\langle\psi_2| + |\psi_3\rangle\langle\psi_3|$$

= $|\psi_2'\rangle\langle\psi_2'| + |\psi_3'\rangle\langle\psi_3'|$

$$\{|\psi_1\rangle\langle\psi_1|, I-|\psi_1\rangle\langle\psi_1|\}$$

30

31

Pirsa: 25020004

B

Observed facts

Hypothesized explanations

$$P \simeq P'$$

$$\forall M : p(X|P,M) = p(X|P',M)$$

noncontextuality

$$\mu(\lambda|\mathsf{P}) = \mu(\lambda|\mathsf{P}')$$

$$\mathsf{M} \simeq \mathsf{M}'$$

$$\forall P : p(X|P,M) = p(X|P,M')$$

$$\xrightarrow{\text{noncontextuality}} \quad \xi(X|\lambda, \mathsf{M}) = \xi(X|\lambda, \mathsf{M}')$$

Pirsa: 25020004 Page 23/44 This is a rigorous way of dividing phenomena into those which can be "explained classically" and those which are rigorous proofs of nonclassicality:

An experiment/theory/phenomena is classically-explainable if one can reproduce the operational predictions in some NCOM.

35

Pirsa: 25020004 Page 24/44

Typical construction of a noncontextuality no-go theorem

36

Pirsa: 25020004 Page 25/44

consider a specific circuit

...and the states/effects/transformations on it

Find the operational equivalences these satisfy:

$$\frac{1}{2}\left|\phi\right\rangle\left\langle \phi\right|+\frac{1}{2}\left|\bar{\phi}\right\rangle\left\langle\bar{\phi}\right|=\frac{1}{2}\left|\psi\right\rangle\left\langle\psi\right|+\frac{1}{2}\left|\bar{\psi}\right\rangle\left\langle\bar{\psi}\right|$$

These imply constraints on any NC representation:

$$\frac{1}{2}\mu_{\phi}(\lambda) + \frac{1}{2}\mu_{\bar{\phi}}(\lambda) = \frac{1}{2}\mu_{\psi}(\lambda) + \frac{1}{2}\mu_{\bar{\psi}}(\lambda)$$

0.7

B

Observing data which violates any noncontextuality inequality is a proof of nonclassicality.

30

Pirsa: 25020004 Page 27/44

Observing data which violates any noncontextuality inequality is a proof of nonclassicality.

Such proofs don't rely on the correctness of quantum theory

40

Pirsa: 25020004 Page 28/44

Why is noncontextuality required for a good explanation?

4

Pirsa: 25020004 Page 29/44

Leibniz's principle of the identity of indiscernibles—
if a difference in set-up is not distinguished in the
observable phenomena then it should not be
distinguished in the ontological picture either

This is a methodological principle which guides us in constructing good physical theories

arxiv:1909.04628

Pirsa: 25020004 Page 30/44

Leibniz's principle in action

Einstein's arguments against the ether

Einstein's strong equivalence principle

arxiv:1909.04628

43

Pirsa: 25020004 Page 31/44

Classicality in the framework of Generalized Probabilistic Theories

4.4

Pirsa: 25020004 Page 32/44

Different theories are defined by their:

B

1. Convex geometry

2. Compositional structure

- -multipartite states
- -multipartite effects
- $-T_1(T_2)=T_3$
- -etc

15

Pirsa: 25020004 Page 33/44

Traditionally, a GPT has been considered "classical" if it is *simplicial*:

state space: simplex

effect space: dual of simplex

48

Pirsa: 25020004 Page 34/44

normalized states

effects

Classical statistical theory: probability distributions over a set of classical states

40

Pirsa: 25020004 Page 35/44

50

Z

But what about subtheories of a simplicial theory?

51

Pirsa: 25020004 Page 37/44

 $simplicial \Rightarrow classical$

simplex-embeddable ⇔ classically explainable

52

The simplest view of a noncontextual explanation:

quantum gates quantum systems

(sub)stochastic maps random variables

https://arxiv.org/pdf/1911.10386v2.pdf

Pirsa: 25020004 Page 39/44

Examples of nonclassical phenomena

55

Pirsa: 25020004 Page 40/44

Minimum error state discrimination

In quantum theory there is no error-free discrimination of non-orthogonal states.

Some have claimed this is evidence of nonclassicality.

But this is easy to explain classically!

https://arxiv.org/abs/1706.04588

56

Pirsa: 25020004 Page 41/44

Minimum error state discrimination

https://arxiv.org/abs/1706.04588

57

Pirsa: 25020004 Page 42/44

Fringe visibility

https://arxiv.org/pdf/2211.09850

60

Suggested references:

Basic definition of generalized noncontextuality:

https://arxiv.org/abs/quant-ph/0406166

Noncontextuality in the GPT framework:

https://arxiv.org/pdf/1911.10386v2.pdf

NC beyond prepare and measure scenarios:

https://arxiv.org/pdf/2005.07161.pdf

Deriving all the noncontextuality inequalities:

https://arxiv.org/pdf/1710.08434.pdf

A linear program for testing simplex-embeddability:

https://arxiv.org/pdf/2204.11905

Experimental tests of noncontextuality:

https://arxiv.org/abs/1710.05948

Going beyond the ontological models framework:

https://arxiv.org/pdf/2009.03297.pdf

GPT shadows:

https://arxiv.org/abs/2112.09719

Thanks for your attention!

62

Pirsa: 25020004 Page 44/44