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WHY BOSONS AND FERMIONS?

Nicolds Medina Sanchez, Operational Quantum Information group, University of Vienna
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SKETCH OF A PROGRAM

The problem of identical particles

An operational perspective

Combinatorics and representations

A theorem on partition functions

New statistics = New physics

Back to algebras and symmetries

A theorem on canonical relations
Introduction to combinatorial operationalism

Ideas to take home
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WHY IDENTICAL PARTICLES?

Gibbs paradox (1902)
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Entropy increase!

Problem: entropy fails to be extensive (additive on subsystems)

Solution: many-particle states differing only by particle interchange are numerically the same
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IDENTICAL PARTICLES IN QUANTUM MECHANI

Symmetrization postulate

a label is attached to each
particle, and it is necessary to
introduce permutation symmetry
to express indistinguishability.

Problem: artificial labels for
indistinguishable particles should
not persist in time, hence
symmetrization is not feasible
operationally.
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Canonical relations

{a(f),d'(9)}

identical particles are generated
by a single field and algebraic
(bilinear) relations between field
operators (e.g. CCR, CAR).

Problem: these relations are ad
hoc, introduced as a postulate
rather than derived from any
physical principle.

I

[a(f),a'(9)] = (f | 9)

(fg)

Topology

particles are embedded in the
configuration space of identical
particles and their statistical
behavior is derived from the
topology of such space.

Problem: relies on the non-
quantum abstract assumption of
the configuration space for
identical particles and only
applies to structureless particles.
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THE QUESTION 1IS...

“Other more complicated kinds of symmetry are possible
mathematically, but do not apply to any known particles”
Dirac, (1930) Principles of Quantum Mechanics

So far, we have not observed generalized statistics of particles in Nature. Hence:
1. We need more precise and sophisticated experiments, or
2. These generalizations collide with basic laws of physics

Operational approach: define a typical quantum experiment and address physical questions

1. How to define identical particles experimentally?
2. How to establish a operational differentiation between types of particles?

Property of a system = > Feasible protocol to verify it
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“IT SEEMS TO US, HOWEVER,
THAT NO COMPLETELY
SATISFACTORY DISCUSSION ON
THE CONSEQUENCES OF
INDISTINGUISHABILITY, IN THE
CONTEXT OF NONRELATIVISTIC
QUANTUM MECHANICS, HAS

EMERGED SO FAR.”

J. M. Leinaas, J. Myrheim, On theory of identical particles (1976)
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A TYPICAL QUANTUM EXPERIMENT

Transformation

Measurement

_ =
d e d

Preparation

Operationally well-motivated -
assumptions
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MY EXPERIMENTAL SETUP

This is an interferometer:

g
Win) e— |1,)

One (quantum) particle:

1. A stateis an element of a complex
Hilbert space of dimension d (e.g. d=4)

2. A transformation is defined by an
element (e.g. g) of the unitary group
u(d)

3. Probability of a detection is calculated
using the Born rule.

What happens if many particles are injected in this setup?

10
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Qutcomes
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k J Bosons Fermions
Y Bunching! Antibunching!

Probabilities

Simple interference experiments distinguish between different types of particles!

=)
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IN MATHEMATICAL TERMS?

1. We have a representation A: U(d) — GL(F), with F the state space of the system.

2. We are claiming that each state can be characterized by a string of numbers
(n4, ..., ng) corresponding to the number of particles detected in each mode. In other words,
each mode carries a representation of U(1) generated by the ,number of particles“ observable.

g
W}in) — |l[}g)

Main problem: which representations of the
unitary group are compatible with a factorization
in d isomorphic reducible representations of U(1)

13
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A PRIMER ON CHARACTER THEORY OF U(d)

Remark 1: A representation A of U(d) is in 1-to-1 correspondence with a function y, called the
character of the representation

g € U(d) - Alg) - xa(g) = Tr(A(g))
Remark 2: Character is a class function. Given s € U(d).
x(s7tgs) = x(g)
Remark 3: A Unitary matrix can be diagonalized.
g = sts~L, t = diagle'®, .., e'%] e T,

Remark 4: Character is a function on the maximal torus
x = x(etfs, ..., etfa)
Remark 5: For the unitary group U(d) an irreducible representation characterized by a Young
diagram A has as character a symmetric polynomial known as a Schur polynomial on the
variables x; = etfi
X}L(xll ...,Xd) = S)L(xlf ey xd)
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LOCALITY ASSUMPTION

Main problem: which representations of the

unitary group are compatible with a factorization
in d isomorphic reducible representations of U(1)

Translating to
character language

v

d
XrGer, %) = ) asay, o xa) = | | xGe)
: : : ' : ' =1

A

Character of the U(d) An integer non-negative combination Character of the U(1) representation
representation on the state space F of irreducible characters on each mode

This is the locality assumption

15
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EXAMPLE: BOSONS AND FERMIONS

d

— ' A\
X'f”’a?.r;";u*sta'm315_; (x1: ---:xd) — ‘ \{1 + AXi)
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d

Xiosone (X1, ""xd) _ 1—[ |

=1
o0
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MAIN PROBLEM REVISITED

D sl Xa) = li[mi )
- - =1

A

An integer nohn—negative combination Character of the U(1) representation
of irreducible characters on each mode

SOLVE THIS EQUATION: Find for which y(x; ) the left-hand side is always a valid representation of
U(d), i.e., such that c; is always a non-negative integer.

What are we doing? Recall, this comes from the interferometric setup. Finding all y(x; ) that solve

the previous equation is the same as finding all valid state spaces for a multiparticle system
described by our setup! |

A valid state space is then a vector space with a specific decomposition into irreducibles of the unitary group

17

©
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EXAMPLE: BOSONS AND FERMIONS

A fermions (x1, -0 Xq) = 1_[ 1+ x;) F ermions =Duvertical 1 Fa

X (xl! -":xd) — 1_[ > N > Fposons =®horizontall FA

Pirsa: 25010085 Page 16/36



Pirsa: 25010085

THERMODYNAMICS TO THE RESCUE

Recall the definition of character:

xa(g) =Tr(A(9))
Given that the unitary group is connected, we can write this in terms of its Lie algebra w.l.0.g

XA(eiH) _ Tr(eiA(H))
If we perform a rotation on the complex plane, what we get is the partition function of the system
xa(eP?) = Tr(efrU) = z(p)

N

Finding all representations of the unitary

group that verify the locality assumption

4 Finding all partition functions
1 compatible with our setup
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EUREKA!

1. Solve this equation ¥, 353 (xq, .., xgq) = [1%, x(x; )

2. Using Lie theory it can be proven that c; is non-negative if and only if for y(x) = ¥ a;x* all
the minors of the upper triangular Téplitz matrix a;; = a;_; are non-negative

3. A deep theorem in algebraic combinatorics (Edrei-Thoma) classifies all upper triangular
Toplitz matrices with non-negative minors! (Thanks to Richard Stanley for showing us this!)

ay a.) a. s “ e e a_("_l)

) Enumerative
a aQ a-p " . s:l:\:::altoﬁcs_.
as a S

A= # 1
a_y a_s

a; @ a-)

an-1 a; @ ag

Edrei-Thoma theorem (adapted): An upper triangular Téplitz matrix has non-negative minors if
and only if the function f(x) = ¥, a;x* has the form

[ +a;x)
f¥) = a0

With @;, ; non-negative real numbers.
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MAIN THEOREM OF PARTITION FUNCTIONS

A partition function for an interferometric system that verifies the locality assumption can be
written as

d d
- oy TT(IA + gzefe)
Z(p;a,B) = L_l[Z(eﬁ ) = 1:1[ [1(1 — BrePer)

Where the products are finite and the parameters such that the single-mode functions are
rational functions

Contrast!

d d
1
Zfermions(B) = 1_[(1 + ePéi) Zposons(B) = 1_[ (1 — efe)
i=1 i=1

22

Medina Sanchez & Dakic, arXiv:2306.05919, 2023
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EUREKA!

1. Solve this equation ¥, ¢35 (xq, .., xgq) = [1%, x(x; )

2. Using Lie theory it can be proven that c; is non-negative if and only if for y(x) = ¥ a;x* all
the minors of the upper triangular Téplitz matrix a;; = a;_; are non-negative

3. A deep theorem in algebraic combinatorics (Edrei-Thoma) classifies all upper triangular
Toplitz matrices with non-negative minors! (Thanks to Richard Stanley for showing us this!)

ay a. | a o e ‘e a_("_l)

) Enumerative
ay apy a- T . s:lr::‘i:altoﬁcs_.
as a -

A=] B @
a_y a_s

Q) ag a)
n-1 a; a ap

Edrei-Thoma theorem (adapted): An upper triangular Téplitz matrix has non-negative minors if
and only if the function f(x) = ¥ a;x* has the form

[ +a;x)
f¥) = =0

With @;, ; non-negative real numbers.
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CLOSE ENOUGH!

g
Yin) e—) |,)

This device is almost enough to
discriminate between bosons and
fermions. Other types of statistics can be
detected, but they are similar to bosons
and fermions up to degeneracies!
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BACK TO STATE SPACES: TRANSTATISTICS

Recall the starting point: to find the valid state spaces. Which state spaces do we have?

The most general state space for a multiparticle system that can be described by our
interferometric setup is a tensor product of the following spaces

Fr =D, Spt(aq, .., )y Fyp =@ 5;¢(B1, -, BUF;

! J L )
T T

Transfermionic Transbosonic

The crucial difference with standard fermionic and bosonic statistics is the degeneracy of the

irreducible sectors, i.e., existence of unknown degrees of freedom. Hence if we assume total
knowledge about the internal structure of the particles we recover bosonic and fermionic statistics

24
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NEW STATISTICS

NEW PHYSICS
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NEW STATISTICS

NEW PHYSICS
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IDEAL GASES

Given the partition function we can calculate standard thermodynamic quantities

___—» Only 1 transfermionic or transbosonic parameter
/‘

1 b
N = Z?’?? B Z LeB(ei—p) 4+ 1 J
i 4

This additional parameter
generates a residual entropy not
present in ordinary statistics. This
entropy does not vanish at T=0,
hence the ground state is highly
degenerate, an indicator of
spontaneous symmetry breaking!

— [1,1]- [1.2]-
(1.1, —[1.2L.

Mean particle number for ordinary (blue and green) and generalized
(orange and red) statistics
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BACK TO
ALGEBRAS AND
SYMMETRIES

\
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TO CREATE AND TO ANNIHILATE

Can we derive transtatistics in an algebraic way, similarly than we can do with bosonic and

fermionic out of the bilinear algebras of Canonical Commutation and Canonical Anticommutation
relations? YES WE CAN

Remark 1: notice that the coefficients in the single mode partition function Z(x) = }.;2, a;x' are
the dimensions of the ,number* sectors, i.e., a; = dim(V,)

®

]

®
2 a2:4
. a, =3
0 a():].
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TO CREATE AND TO ANNIHILATE

Remark 2: This means that the single mode partition function is the Hilbert-Poincaré series of the
U(1) representation that we have in each mode seen as a graded vector space.

V=V Z dimp (V;)t'
| * ’ ieN

Graded vector space
Hilbert-Poincare series of V

Hilbert-Poincaré (HP) series reflect ,,well-behaviour®, i.e., when the graded vector space verify
certain symmetries the HP series will be constrained, e.g. the Hilbert-Serre theorem: if V is a
representation of a Noetherian ring the the HP series is a polynomial divided by an specific
denominator.
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KOSZUL PROPERTY

The Koszul property is a notion of simplicity in graded vector spaces. It indicates that higher
degrees are determined quickly by lower degrees. Examples of spaces with the Koszul property are
the fermionic and bosonic state spaces. This is a projection of the idea that creation-annihilation
algebras are bilinear and generate ,efficiently“ the whole vector space. We have the following
theorem

Theorem (Sam, Vandebogert; 2024): there is a graded vector space with the Koszul property such
[1(1+a;x)

, with the same conditions as in the
[1(1-Bjx)

that its Hilbert-Poincare series is of the form f(x) =

Edrei-Thoma theorem.

Using a classic result on quadratic algebras we can prove:

Lemma: Transtatistics can be generated by bilinear relations

Several alternative statistics are defined with higher-order relations! E.g. Green‘s parastatistics.
We do not need that! v
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SUMMARY SO FAR

Transtatistics are different than other (generalized) statistics, e.g. parastatistics, quons, fractal
statistics etc.

Transtatistics comes from the unitary group symmetry and a locality assumption on counting
Ordinary statistics come from irreducibility (no hidden symmetry)

Transtatistics can be generated by bilinear relations (well-behaved creation-annihilation algebras)

Some comments/outlook:

1

B W N

(1)
(2)
(3)
(4)
(5)

5

Why are transtatistics non-physical?

Interesting maths (algebraic combinatorics ¢====) particle statistics)

Relation to thermodynamics (character =) partition function, via complex rotation)
Novel integrable models (generalized Jordan-Wigner transformation)?

Quantum computing perspective (intermediate models):

Bosonic linear optics Fermionic linear optics Transtatistics
(Bosons sampling) (Matchgate computations) 2?7
hard easy 7??

Pirsa: 25010085 Page 30/36



Pirsa: 25010085 Page 31/36




Pirsa: 25010085

THE PHILOSOPHY OF COMBINATORIAL OPERATIONALISM

Rlgehiaie o | Symmetries
: R 4
objects Y ety
Df}-,o!na
’
e An agent can only select,
Algebraic actidns, : ; . .
diacicghor ik Combinatorics arrange and combine finite
data
Topolqgic, N ot
metric, <«— State spaces
vectorial,...

Most of modern physics
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THE RECONSTRUCTION PROGRAM

Equivalence class of symmetric spaces Combinatorial object
' '
Formal theories Agent-based theories

Operational reconstructions of physical theories = When is this map ‘covariant?

34
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PHYSICAL CYBERNETICS

Physical system

3 Dynamics <
[ Input variables » Qutput variables }
A
Action Measurement
A4
il Information processin g s .
Decision < - - Combinatorial representation

Agent system

35
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PROJECTS

* Combinatorial reconstruction of projectivity and unitarity
* Combinatorial reconstruction of causality and geometry
* The quantum-to-classical transition
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QN

THANK YOU!

nicolas.medina.sanchez@univie.ac.at
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