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Abstract:

the no-cloning theorem is an essential result in quantum information on top of which many quantum cryptography protocols are
built. In this talk we examine the cloning question in the context of classical mechanics/Hamiltonian mechanics. We find the
answer is quite subtle: whether a mechanical system can be cloned depends on the topological structure of its phase space. In
particular, for a system to be clonable, its phase space must be contractible. This means certain systems (e.g. particle moving
on a line) is clonable, while others (e.g. the simple pendulum) cannot be cloned. We explain the idea of the proof, which uses
tools from algebraic topology (homotopy groups and Whitehead’s theorem). Finally we discuss the physical interpretations of
this result: how do we reconcile this theorem with the experience that generally speaking, classical information is clonable? Can
we use this no-cloning theorem to build secure communication protocols in classical systems instead of quantum ones?
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Intreduction: The Quantum No-Cloning Theorem

Introduction: The Quantum No-Cloning Theorem
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Introduction: The Quantum No-Cloning Theorem

The Quantum No-Cloning Theorem

@ The no-cloning theorem in quantum mechanics is an essential result
in quantum information on top of which many quantum
cryptography protocols are built.

@ The version of the theorem we will need is the following: we cannot
build a machine that copies the (unknown) state of a quantum
system onto another identical quantum systam.

Yuan Yao
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Introduction: The Quantum No-Cloning Theorem

The Quantum No-Cloning Theorem

Theorem

[Fen12; Sca+05] Let H and H'i both be finite dimensional complex
Hilbert spaces, with dimH > 1. There cannot exist vectors
|b) € H,|r) € H' and an unitary mapU - HOHOH - HRIHOH'
taking

[¥) ® [b) ® ) = [¥) ® [¢) ® |r)

for every ) € H. Here |r') € H' depends on |1)

Pirsa: 25010084 Page 6/40



Intreduction: The Quantum No-Cloning Theorem

Application to Secure Communication

@ This no-cloning theorem is used construct secure communication
protocols between Alice and Bob. The idea is that if they exchange
quantum states, then Eve cannot make a perfect copy of the
quantum state without Alice and Bob noticing.
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No-Cloning in Classical Mechanics

Cloning in Classical Mechanics

@ What should be the analogue of the cloning process in classical
mechanics?

o Replace Hilbert space ‘H with the phase space T* M of the system.

@ Phase space: if a particle is confined to move on a geometric space
M, the phase space is the space of all its possible states by
specifying both its position and (generalized) momentum. It's the
classical analogue of the Hilbert space of states.

Yuan Yao
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No-Cloning in Classical Mechanics

@ Example. If a particle is confined to move on the real line R, the
phase space is T*R = R?, consisting (z, p) € R? that specifies its
position and momentum.

Yuan Yao
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No-Cloning in Classical Mechanics

Cloning in Classical Mechanics ct'd

e Example. If a particle is confined to move in a circle S* (for example
a simple pendulum). Then its phase space is 7*S' = R x S', which
is a 2 dimensional cylinder. The variables (L,0) € R x S!. L
specifies its angular momentum, and @ is its angular position.

/B

Generally speaking for a particle confined to move in M, its phase
space is the cotangent bundle of M, which we write as T*M. It's a
space that specifies both the position and momentum of the
particle. The cotangent bundle comes with a natural symplectic
structure, which helps specify the dynamics of the system (but we
will gloss over this point for now).

Yuan Yao
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No-Cloning in Classical Mechanics

Cloning in Classical Mechanics ct'd: dynamics

@ To specify dynamics on a phase space 7" M, we need to specify a
Hamiltonian H : T*M — R, or it may be time dependent which we
write as H; : T*M — R. Morally speaking a Hamiltonian assigns an
energy to each state.

@ The dynamics is specified by solving Hamilton's equations. Let the
pair (z,p) € R™ x R™ denote (canonical) local coordinates on our
phase space, the time evolution, after starting at point (z,p), is
given by

o _OH . OH

@ These assemble into the notion of a Hamiltonian flow on the entire
phase space ¢; : T*M — T*M. Given a point (z,p) € T*M,
o¢(x,p) is by definition which state it will evolve into after time ¢.

@ Then obviously ¢g:= Id, since no time has passed, and
¢y : T*M — T* M is continuous, and depends continuously on t.

Yuan Yao
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No-Cloning in Classical Mechanics

Definition of cloning in classical mechanics

@ We want to capture the notion that cloning is a process where “ we
use a machine that copies the (unknown) state of one particle onto
another identical particle in some initial state”.

@ Recipe: Replace Hilbert spaces with phase spaces; replace tensor
products of Hilbert spaces with products of phase spaces; replace
unitary maps with time-1 Hamiltonian flow.

Yuan Yao
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No-Cloning in Classical Mechanics

Definition
A classical cloning process is given by

@ A phase space T M of the system to be cloned and a phase space
T*N of the cloning machine.

@ A point b€ T*M, a point 7 € T*N, a (potentially time dependent)

Hamiltonian on T*M x T*M x T*N whose time-1 flow is a map
that sends

(bl : (ya ba T) 7 (ya Y, h(ys b: 7‘))

for all y € T*M. Here h(—,b,r) is some smooth function from
T*M: to T"N.

If the above data exists for the the phase space T* M, then we say it is
clonable.
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No-Cloning in Classical Mechanics

So which phase spaces can be cloned?

@ So which phase spaces can be cloned?

[Fen12] The phase space T*R™ =2 R?" js clonable. In other words, a
particle moving in Euclidean space is clonable.

@ In fact you can write down such a Hamiltonian relatively explicitly

[Fen12; RSS19]. This mirrors our experience classical information is
clonable.
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No-Cloning in Classical Mechanics

So which phase spaces cannot be cloned?
Theorem

[Yao23] If a phase space T*M is clonable, then it must be contractible.

@ What is contractible? Consider the space X. Contractible means
being able to find a 1 parameter family of continuous maps

fi : X — X that starts at fy = Id, and ends at the constant map:
for all z € X we have f)(z) = p for some fixed p € X.

@ In other words, in a contractible space | can simultaneously move all

points in the space X to a given point p € X in a continuous
fashion.

@ A disk is contractible, a circle is not contractible.

Yuan Yao
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No-Cloning in Classical Mechanics

So which phase spaces cannot be cloned?

@ In particular the phase space of the simple pendulum is a cylinder,
hence not contractible!

@ Another way to say the no cloning theorem is as follows: If you try
to build a machine that tries to clone a non-contractible phase space
T* M, no matter how complicated your cloning machine is, | can
always find some initial conditions in 7*M in which your cloning
process fails (and we shall see, fails by a very large amount).

Yuan Yao
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No-Cloning in Classical Mechanics

Intuition for the Proof

o Before we launch into an explanation of the technical tools required
for the proof, we give an intuitive sketch for the case of the simple
pendulum and why it cannot be cloned.

The phase space of the simple pendulum is 7*S! (which is a
cylinder), and the phase space of the cloning machine is T* N, so
the phase space of the combined system is T*S! x T*S! x T*N.
For technical reasons we can forget the third factor and simply think
about T*S' x T*S!.

Topologically, the cylinder is not so different from the circle, so we
can further replace total phase space with S! x S'. Since we got rid
of the R factor, we can pretend we are only thinking of states with
zero angular momentum.

Yuan Yao
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No-Cloning in Classical Mechanics

@ We think of the first S! factor as the state space of the first
pendulum, and the second S! as the state space of the second
particle.

@ Topologically, S* x S! is just a two dimensional torus. The first S
factor wraps around the meridian direction, and the second factor

wraps around the longitudinal direction.

i

Yuan Yao
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No-Cloning in Classical Mechanics

Intuition for the Proof, ctd

o After all these reductions and simplifications, the cloning map is one
that takes the set

R := {(z,b) c S* x §'|x € S'}

into the set
B :={(z,2) € ' x S'|z € §')

(i.e. we clone the state of the first particle onto the second particle.)

@ The set R is represented by the red curve on the torus, and B is
represented by the blue curve on the torus.

= ( =>

(a) red curve on a torus (b) blue curve on a torus

Yuan Yao
»
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No-Cloning in Classical Mechanics

Intuition for the Proof, ctd

@ The point is that cloning must come from continuous Hamiltonian
time evolution. At t = 0 the Hamiltonian flow is the identity map
(since no time has passed), and the Hamiltonian flow at t = 1 we
have the cloning map. So there must be a continuous deformation
taking the set

R:= {(z,b) c ' x S|z € S}

into
B := {(z,z) € S' x S'|x € S'}.

@ Then as shown in the figure below, this implies a continuous
deformation from the red curve to the blue curve, which is not

possible.

Yuan Yao
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A crash course on algebraic topology

A crash course on algebraic topology
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A crash course on algebraic topology

Introduction to homotopy theory

@ The correct way to get references for this material is as follows: walk
into the nearest math department; grab onto the first person you
see; and don’t let go until they explain homotopy groups to you.

@ The point is this: how do we distinguish an annulus from a disk?
How do we make precise the notion that the annulus has “a hole” in
the middle?

@ The key insight is that on the disk any loop you draw can be
continuously collapsed to a point, the same is not true for the

annulus.

&)
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A crash course on algebraic topology

The fundamental group

@ Let X denote a geometric space (for example an annulus). We fix a
point p € X, and consider the pair (X, p).

@ We consider the set of continuous maps from the circle to X,
f:S8' - X that sends 0 € S' to p € X.

"

Yuan Yao
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A crash course on algebraic topology

The fundamental group, ct'd

@ We say two maps f,g: S' — X are equivalent to each other if they
can be deformed to each other while keeping the condition 0 € S*!
gets mapped to p € X.

Pirsa: 25010084 Page 24/40



A crash course on algebraic topology

The fundamental group, ct'd

@ We then consider the set of equivalence class of maps. It has one
operation called composition, which is the concatenation of loops.
We write it as f x g. Here x is a binary operation that takes two
loops and spits out a third loop which is their concatenation.

Yuan Yao
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A crash course on algebraic topology

The fundamental group, ct'd

@ We then consider the set of equivalence class of maps. It has one
operation called composition, which is the concatenation of loops.
We write it as f x g. Here x is a binary operation that takes two
loops and spits out a third loop which is their concatenation.

The set of equivalence classes, combined with the operation *, is
called the fundamental group. We write it as 7, (X, p).

The fundamental group of the annulus is isomorphic to (Z, +), the
integers with the addition operation. The integer is the winding
number of the loop, and when we concatenate two loops their
winding numbers add.

Yuan Yao
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A crash course on algebraic topology

The simple pendulum cannot be cloned, revisited

e Using the language of fundamental groups, the proof that the simple
pendulum cannot be cloned looks something like this. It's a
rephrasing of the heuristic sketch we gave using mathematical
language.

Recall the phase space of the pendulum is 7*S*, and that of the
cloning machine is T* N.

Consider
T (T*S! x T*S! x T*N) = 7, (T*SY) x w1 (T*SY) x m (T*N).
Consider the map f : S' — T*S! x T*S! x T*N that has winding

number 1 in the first copy of 7*S!, and is constant on the
remaining two factors. This represents the element

(1,0,0) € Z x Z x m;(T*N) = 7, (T*S* x T*S* x T*N).
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A crash course on algebraic topology

The simple pendulum cannot be cloned, revisited

@ Composing this with the cloning map,
G1:T*S xT*S x T*N - T*S! x T*S! x T*N.

o The resulting composition is ¢; & f : S1 —» T*S! x T*S! x T*N.

Since the cloning map came from a continuous time evolution it
cannot change the element of the fundamental group, so ¢, o f
should still be the same element in the fundamental group

(1,0,0) € Z x Z x m (T*N) = m (T*S* x T*S* x T*N).

e However, the condition that ¢, (y,b,7) = (y,y, h(y,b,7)) means
¢1 o f should represent

(1,1,%*) EZ X Z x m(T*N) 2 7 (T*S! x T*S' x T*N).

@ The two above statements cannot both be true, so cloning is not
possible.
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A crash course on algebraic topology

The general case and higher homotopy groups

@ More generally to get clonable phase spaces are contractible, it is
not enough to consider the space of loops (i.e. the fundamental
group) mapping into the phase space. We should also consider the
space of higher dimensional spheres mapping into the phase space.
They are known as higher homotopy groups.

@ The same argument as before shows all homotopy groups of the
phase space must vanish.

e Whitehead's theorem tells us if wg have a space all of whose
homotopy groups vanish, then the space is contractible. From this
we get clonable phase spaces are contractible.
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No approximate cloning theorem

Approximate cloning

@ Since our techniques are purely topological, it is robust against small
perturbations/noise. This can be formalized as a no-approximate
cloning theorem.

A approximate cloning process is given by

o A phase space T M of the system to be cloned and a phase space TN
of the cloning machine.

e A point b€ T"M, a point r € T" N, a (potentially time dependent)

Hamiltonian on 7" M x T*M x T* N whose time-1 flow is a map that
sends

¢1 : (ya b, T) = F (y A El(y}) y+ Ez(y), h(ys b, T))

for all y € T*M and € (y), e2(y) are suitably small error term. Here
h(—,b,r) is some smooth function from 7" M to T*N.

If the above data exists for the the phase space T* M, then we say it is
approximately clonable.

Yuan Yao
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No approximate cloning theorem

Approximate cloning

For suitably defined small error terms €(y), if a phase space is
approximately clonable, then it is contractible.

e Informally speaking, the no-approximate cloning theorem says you
cannot setup a cloning machine that approximately clones a
noncontractible phase space. For every apparatus you build that
tries to approximately clone a noncontractible phase space, | can
always find some initial statelfor which your cloning process will be
outrageously wrong: error much greater than allowed in the
approximate cloning scheme.

Yuan Yao

Pirsa: 25010084 Page 31/40



Pirsa: 25010084

No approximate cloning theorem

Approximate cloning

@ This form of the theorem is what really collides with our intuition in
the real world - you can no longer say the no cloning theorem does
not apply to real world settings because it's too idealized and in the
real world there's no such thing as cloning without error.

@ No, something very strange is going on with this no-cloning theorem.

We examine next the physical implications of these theorems.

Yuan Yao
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Interpretations and discussion

Puzzle 1: we expect classical information is clonable

e | figured out parts of how to reconcile these no cloning theorems
with the real world, some are still very mysterious to me. | will start
by explaining the parts | figured out and understand.

@ Our intuition about the real world is that generally speaking,
classical information is clonable. For example a computer is able to
copy a string of Os and 1swithout issue.

@ We imagine building a mechanical analogue of a computer, maybe
made out of pulleys and springs, so we can be in the setting of
classical mechanics.

@ A mechanical analogue of 0 or 1 could be a coin on a table, 0
representing tails, and 1 representing heads.

Yuan Yao
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Interpretations and discussion

Puzzle 1: we expect classical information is clonable

@ The answer is yes. Even though we don't apriori know the coin is
heads or tails, we apriori know it has be to head or tails. In other
words, the coin is confined to discrete points in the phase space.
Discrete points are contractible, and clonable by a classical theorem
in symplectic geometry.
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Interpretations and discussion

Puzzle 1: we expect classical information is clonable

@ The point is, typically when we think of copying information, we
already know the information to be copied is confined to a
contractible region of phase space. Hence we can copy without
worrying about topology.
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Interpretations and discussion

Puzzle 2: Why can't | just clone a pendulum?

@ Imagine walking into a lab with a swinging pendulum.

| ask my experimentalist friend to clone it. He first measures the
position and momentum of the swinging pendulum, then he pushes
an identical pendulum into the same position and momentum.
There, cloned.
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Interpretations and discussion

Puzzle 2: Why can't | just clone a pendulum?

@ Against since our theorem is about classical mechanics, we build a
mechanical representation of the problem.

We can think of measuring the position and momentum of the
swinging pendulum as scattering a large number of massless
particles onto the swinging pendulum. Then the position and
momentum of the pendulum is encoded in the scattering data of the
massless particles.

Now we need to turn on a Hamiltonian that extracts the information
from the scattered particles and pass it onto the identical pendulum.

Which of these steps fail? Can we quantify the way it fails?

This is perhaps not so easy to understand since an experimenter has
10?3 particles in them. Can we find a smaller system in which we
can understand why cloning fails?

Yuan Yao
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Interpretations and discussion

@ Here is another thought experiment. Again in the case of the simple
pendulum. Suppose we really want to clone it, we can view it as a
particle moving in R?, and clone it as a particle moving in R? onto a

test particle moving in R2.

@ Our no cloning theorem then implies that during this cloning process
the pendulum cannot remain on its original circle, the length must
change (and at some point shrink to zero).

Yuan Yao
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Interpretations and discussion

Puzzle 3: can we make the no cloning theorem useful?

@ Then this brings us to the final point of discussion. The no cloining
theorem is true, but can we make it useful? Or is it just a
mathematical curiosity?

The no cloning theorem in quantum mechanics is used to establish
secure communication protocols. Can we do something similar using
the classical no cloning theorem?

Find a system large enough to be not affected by quantum
mechanics, howeverismall enough so that we can’t just “measure
position and momentum by hand” and clone it by hand using an
experimenter with 1022 particles in them, like cloning a simple
pendulum in the lab.

Conceptually, we need an axiomatic framework for measurement and
extracting information in context of classical mechanics (we already
have one for quantum mechanics). After all, if we can’t clone, what
does it mean to measure anymore?

Yuan Yao
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