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Abstract:

Horizons can occur in a wide range of physical situations, many of which we can construct in the lab. Most gravity simulators
observe features, like super-radiance, that are analysed as a continuum effect in gravity, whereas many interesting "beyond GR"
features theorise about the impact of quantised aspects of the black hole.

In this talk, | will describe recent experimental work on a liquid helium giant vortex that naturally has quantisation, and how we
hope to explore "black hole" phenomena in a broader context.

Based on [arXiv:2308.10773 [gr-qc]]
with: Patrik Svancara, Pietro Smaniotto, Leonardo Solidoro, James MacDonald, Sam Patrick, Carlo Barenghi and Silke Weinfurtner
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« QSImFP

 Fluid analogs: an introduction.

* Quantum systems - the experiment
* Different dispersions — the theory

 Where next?
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While we are increasingly confident of our theories of General Relativity and the
Standard Model, there are gaps and puzzles.

One of the core issues is defining a vacuum. How sure are we of the classical /
quantum split?

Non-perturbative processes in QFT and gravity are far less well tested than the
controlled environment of a collider.

Black holes do not sit well with QFT — eg unitarity. Can we explore from a
different direction?

Much speculation around the quantum nature of black holes involves
assumptions about how physics changes at high energies, or if boundary
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One of the most common, yet controversial,
phenomena associated to discretising the
properties of a black hole is that of Echoes.

insp?iral merger/ringdown echloes

IMAGE CREDIT: B KNISPEL
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But we can also imagine that black holes carry
discrete angular momentum. How is that shed
or accreted?

x2.y2

3z2-r2

Does a similar quantisation occur in
superradiance?

To explore, want to build a quantized fluid
“hole”.
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3 x 1.5 m tank with dyed water
Exchangeable central drain
Recirculation pump

Custom wave generator

htub vortex roW‘m N ottr?fgham (cIaSS|caI

j..-
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0y +v-V)v+ — —g —vViv =

“ 1}7//7////////// o Tv—0 Stokes

Irrotational
Vxv=0=v=V¢

Coupled system for
surface waves:

(0; + v - V)¢ + g6h — yV26h — 20V?¢ = [glegzating

F(k) = ktanh(hk)
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Long wavelength: 2 =

b
2 272 2 q—v
(O +v-V) ¢p—cVp=0, c® = gh h
1
0h = N O+v-V)b  Z77777777777777777777777777777777777 7777777777777
in ic” ! 0 bOpe) =0
These can be recast in “geometric” form: ﬁ o (VI 9"°0p0) = o Surface tension

where

- Theory is equivalent to a KG
field in curved spacetime
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D
v, = —— draining flow
7"

circulating flow

i
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R >1, w<mQy

wQNM ~ Wy — Z(n o 1/2)|)\|

Superradiance is the amplification of Ringdown is the decay of an excited
low frequency waves by picking up state around the black hole / vortex
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f (Hz)

Amplification of
corotating modes
// is consistent with
superradiance
4.2
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Ringing at characteristic frequencies i
associated to lightring observed.
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Fluid “black hole” exhibits same phenomena as GR black hole within constraints of
experiment.

What happens if we have a less classical set-up?
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Uses Helium-4,
can’t lean over to
stir liquid He!l

Magnetically coupled
propellor spins to
give circulation. \
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Experimental area — diameter 75 mm, 40 mm height

1. Rotation provided by magnetic coupling

2. Rotating propeller acts as a centrifugal pump

3. Bespoke 3D printed flow conditioner & draining hole
4. Patterned disc provides imaging for ripple detection

5. Draining vortex forms in centre

Vortex generator
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SET-UP

Fully transparent - custom glass Dewars
without silvering

Experiments at 1.6-1.95 K so far
Propeller speed range 0.5 -3.5 Hz

Pirsa: 25010083 Page 23/44



SURFING THE WAVE

Once a vortex has been formed, it is
the surface waves that we want to
measure and test.

The patterned disc has a very specific e .
FT, distorted by surface waves. S, -

o .E:::” o
Fourier Transform Profilometry i 3.-“ '

(high resolution in space and time)

Pirsa: 25010083 Page 24/44



The experiment places constraints on the
set-up; have to be more realistic about
modelling.

()72 (L IIC-)()
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To understand the experiment, need to model properly.
Waves in our system aren’t long, so need to understand
parameter space.

Surface tension @)

F 3

Theory is equivalent
to a KG field in
curved spacetime
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To understand the experiment, need to model properly.
Waves in our system aren’t long, so need to understand
parameter space.

Surface tension @)

F 3

Theory is equivalent
to a KG field in
curved spacetime

/«- Experiments
o

Still have BH
h scattering
V processes
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In the absence of spatial flow c lg

&h —_—

=1

dependence, plane waves have
the dispersion relation:
<+ h

VIPIIISIIIIII ISP IIII NI IS IIIIIIIIIIId

w= —ivk® +v -k + /(gk + vk3) tanh(hk) — v2k*

Use plane wave intuition to build more general flow via WKB analysis
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rays .
\y To solve wave equations assume the dependence

will be largely oscillatory, with some slowly varying
amplitude:

Wavefronts ¢ B A(X, t) eiS(x,t)
Sh| | B(x,t)
lgnoring viscosity get a dispersion relation:

(w—v-k)? = (g + vk?)k tanh(hk)

()72 OV [cc]LTIC-)()
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(w—v-k)? = (g + vk?)k tanh(hk)
ke = \/9%

N
N\

NS
O\
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(w—v-k)? = (g + vk?)k tanh(hk)

Ratio of surface tension to gravity determines scale at which quartic 5. _
dispersion terms relevant (1.7cm) c=V3g/Y
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(w—v-k)? = (g + vk?)k tanh(hk)

Ratio of surface tension to gravity determines scale at which quartic 5. _
dispersion terms relevant (1.7cm) c=V3g/Y

1/h determines the scale of flattening of the dispersion curve.
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Example: superradiance with Bogoliubov dispersion

(w—v-k)? =c?k? + €2k* /4

mSly, Usual condition
1+ mé&/r w < mfly

Amplification for w <
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THE WAVE

Now we go back to the
experiment and test our
understanding.

()72 V(L IIC-))
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Reconstruct the waves from the profile
distortion. Azimuthal number m: number of
crests/troughs around the vortex

Plot the dispersion relation w.r.t. angular m
eigenvalue. Clear threshold frequency, also
greater spectral tilt nearer vortex.
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Lifting the dispersion relation from earlier, (deep regime) see the effect of v

clearly on yellow plot C
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Fpr + V/ gk + 7k

Minimum frequency stationary w.r.t. p,
Consistently find p, =0

Circulation from azimuthal velocity,

N = C/k circulation quanta inside core

()72 OV [cc]LTIC-)()
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X

Picking out an m (+8) and plotting radially shows clear evidence of modes.

Minimum frequency provides inner potential barrier, flow confined at outer wall.

(L: Solid core, R: Hollow core, Middle: Modelling. Red is measured effective inner

barrier, yellow modelled barrier.)
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Checking ringdown properties is more
messy as experiment is “small” and the
boundary acts as a mirror. QNM’s
migrate into two categories — quasi-
bound states confined near boundary,
and genuine QNM’s near vortex core.
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However — experimental noise now becomes
an asset in detecting ringdown modes!
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Analog systems allow general features of wave propagation on
various backgrounds to be explored Many properties such as
ringdown & superradiance are universal.

> Extremal / near extremal behaviour

» Phenomena of a quantized black hole

» Echoes?

()72 OV [cc]LTIC-)()
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